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Spin accumulation in the extrinsic spin Hall effect
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The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include
spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary
conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit
coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced
by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomo-

geneous spin densities and currents are presented.
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In the presence of spin-orbit (S-O) coupling, either due to
impurities or due to host lattice ions, carriers of opposite
spins tend to scatter into opposite directions. With an electric
field induced (longitudinal) motion under bias, the S-O scat-
tering results in a transverse spin current and spin accumu-
lation, as predicted by D’yakonov and Perel’,’? and later
revisited by others.®> This effect, which is now called the
extrinsic spin Hall effect (SHE),* has been recently demon-
strated experimentally in n-GaAs and n-InGaAs thin films’
and in two-dimensional electron gas confined within (110)
AlGaAs quantum wells.® The signature of the effect is oppo-
site spin accumulation at the edges of the sample, with spin
polarization perpendicular to the transport plane.

This paper has two goals. First, we present a formalism
for carrier drift and diffusion in inhomogeneous spin-
polarized semiconductors in the presence of S-O coupling
and spin-dependent band-to-band electron-hole recombina-
tion. The formalism, which is a generalization of a previous
spin and charge drift-diffusion theory,”® applies to both uni-
polar and bipolar cases, the former being a subclass of the
latter. Second, we apply the formalism to explain the main
qualitative features of spin accumulation in the extrinsic
SHE in the optical orientation experiment, for two different
boundary conditions: (a) uniform generation of electron-hole
pairs, and (b) edge generation of nonequilibrium electrons.
In both cases spin accumulation throughout the sample is
calculated analytically. We find that S-O interaction modifies
the carrier and spin diffusion lengths and that the spin accu-
mulation profile depends, qualitatively, on the specific
boundary conditions, implying that interpretation of extrinsic
SHE requires detailed case-by-case considerations for spe-
cific experimental and sample geometries.

Consider spin-polarized transport in an inhomogeneous
nonmagnetic semiconductor in the presence of electric field
E. If S-O coupling is present, causing skew scattering and
side jump, the phenomenological expression for the carrier
(¢=n for electrons and c=p for holes) charge current density
in the ith direction is readily obtained by generalizing the
Dyakonov-Perel’ prediction!?
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Here the upper (lower) sign is for electrons (holes) and A is
the spin index; ¢ is the proton charge. The first two terms are
conventional (longitudinal) carrier drift and diffusion, re-
spectively, with u and D denoting the spin-dependent mobil-
ity and diffusivity. The third (fourth) term represents the ef-
fects of skew spin-orbit scattering and side jump on drift
(diffusion). The effects of the scattering are in the transverse
direction to E and are opposite for spin-up and spin-down
carriers. (Holes are treated here as spin doublets, which is
appropriate in low-dimensional structures with heavy and
light hole band splitting; otherwise hole spin does not matter,
as we will argue below). The corresponding transport param-
eters are transverse mobility v and transverse diffusivity &;
they are proportional to the S-O coupling strength.

It is more illuminating to introduce the charge,
J.=Jy+J|, and spin, J;=J;—J|, currents. In terms of carrier
(c=cy+c)) and spin (s,=c;—c)) densities, the currents are

Jc,i = CI(MCC + luscsc)Ei =~ Q(Dc[?ic + Dscaisc)
+q€;.E (Vs + vyc) + q€ (6,955 + 6,.9,c),  (2)

Jsc,i = q(lu’scc + lu’csc)Ei * q(Dcaisc + Dscal’c)

+ g€ E(vee+ vys.) + qe;,(6.0,c + 6,.9;5.).  (3)
The transverse carrier charge and spin mobilities are given
respectively by v,= (v, +v.)/2 and vy .=(v—v,)/2, while
the transverse carrier charge and spin diffusivities are
8.=(8.4+6,)/2 and &,,=(8.1=5,)/2. The corresponding
longitudinal quantities are defined similarly.

Equations (2) and (3) succinctly describe the appearance
of the transverse spin drift and diffusion in the presence of
longitudinal charge transport, which is the essence of the
extrinsic SHE. If the longitudinal current is spin polarized,
the above equations describe the anomalous Hall effect® and
the appearance of the transverse Hall voltage.
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To further develop the formalism, we need to include
electron-hole recombination and spin relaxation. In the pres-
ence of S-O coupling, spin-dependent selection rules!® for
band-to-band transitions need to be considered. In general,
the continuity equation reads

£ er.ilq = Bi(exex — conor) + Balexc s = conc )
+(ey = ¢)/2T .. 4)

Here ¢ is p(n) if ¢ is n(p),c is the equilibrium carrier den-
sity, and T, is the T time for spin flipping.

The spin-preserving recombination rate coefficient B, as
well as the spin-flip coefficient B,, can be calculated by gen-
eralizing the unpolarized case.!"'> The valence band of zinc-
blende semiconductors consists of three subbands: heavy
hole, light hole, and split-off hole bands. We neglect the
split-off band as the energy splitting A> kT at temperatures
T lower than or around room temperature. By explicitly tak-
ing into account the angular momentum of the heavy hole
and light hole states, and using the optical selection rules for
the states,'” we arrive at the following expressions for spin-
conserving and spin-flip recombination constants:

C[mh/(mc + mh)]3/2 + _%[m,/(mc + ’7’11)]3/2

= (5)
1 mZ/z + m}%/z >

U [my/(me +my) 1
SRR ©
where C depends on the “maximum” electron energy
hipax=€,+kpT/2 (€, is the energy gap) and temperature,

4¢? ( 27h?

D= 32,25\ ey

32
) Pnho. (7)
Here P is the momentum matrix element for optical transi-
tions, n, is the refractive index, m, (m;, and m;) is the band
mass of electrons (heavy holes and light holes).

Equations (1) and (4), together with Poisson’s equation
form a closed set of nonlinear equations whose solution de-
termines charge and spin densities and currents in a semicon-
ductor with S-O scattering included. In general, these equa-
tions need to be solved numerically for specific cases of
interest. Our next goal is to introduce qualitative features of
spin accumulation in two cases of experimental interest that
allow analytical solutions and form a starting point to discuss
the concepts and issues to be encountered in more complex
situations involving SHE and S-O coupling effects in trans-
port. We consider a p-type semiconductor with nondegener-
ate electron (minority) density induced optically. The result-
ing spin accumulation via extrinsic SHE can be deduced in a
manner similar to spin orientation experiments. We assume
that the injected electron density is well below the donor
density. Further simplification follows from the fact that mo-
bilities and diffusivities are spin independent in the nonde-
generate regime.’ Finally, we assume unpolarized holes since
hole spin relaxation in zinc-blende semiconductors is ex-
tremely fast.!> The only carriers of interest are then spin-
polarized electrons.
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Using the above assumptions, Egs. (2)—(4), give the drift-
diffusion equations for electron spin and carrier density

Vs + (qlkgT)(s V - E+E - Vs) + ({g/kgT)(Vn X E),
+ (wp+ 1/T,,)s =0, (8)

Vi + (qlkgT)(nV -E+E - Vn) + ({q/ksT)(Vs X E),
+w(np —ngp) =0, )

where w=(B,+B,)/2 and {=v,/u,=36,/D, characterizes the
S-O coupling strength, ng, p, are the equilibrium electron and
hole densities. The spin quantization axis is taken to be z. We
take E=EY and consider x to be the transverse direction, the
slab boundaries being at x=0 and x=a, so that all the quan-
tities of interest will have x dependence only. Denoting the
electron recombination time as 7,=1/(wN,), where N,
is the acceptor density, and spin relaxation time as 7
=l/(7';1+T1',1), Egs. (8) and (9) become

§+ (LqElkgT)n — s/IL* =0, (10)

i + ({qElkgT)s — (n — ng)/L2 =0, (11)

where derivatives with respect to x is denoted by overdots,
the longitudinal spin and charge diffusion lengths are defined
as L,=\D,7, and L,=\D,T,, respectively. In deriving the
above equations we have neglected terms of order s2, sdn,
and &n? relative to Sh=n—-n,.'"* Spin-charge coupling in Egs.
(10) and (11) is apparent through the first-order derivatives
of spin and charge densities.

We first solve the transverse spin and carrier diffusion for
the case of a uniformly illuminated slab (boundary condition
BC I), with electron-hole spin-unpolarized generation rate G.
We assume that carrier recombination at the edges is not
significant so that it is reasonable to impose a uniform (here
zero) electron transverse current: J,(x)=0. As for spin cur-
rent, we take J(x=0)=J(x=a)=0, implying that spin-flip
scattering at the edges is moderate. The solution to the drift-
diffusion Eq. (10) in the presence of S-O scattering is

gEL;
kyT

s(x)=¢ G, sech(a/2L,)sinh(x/L —a/2L). (12)
The spin-polarization profile is given by a(x)=s(x)/Gr,,
since G7,>n, is the average electron density generated in
steady-state conditions under illumination. This simple solu-
tion demonstrates the essential physics behind spin accumu-
lation in extrinsic SHE: (i) Spin accumulation increases lin-
early with E, with possible slight electric field modulation
due to the dependence of L,=L,(E) (not discussed here). (ii)
The magnitude of spin polarization is proportional to the
strength of the S-O scattering as well as to the ratio of the
voltage drop over min (L;,a) and thermal energy. (iii) For
a<<L, the accumulation at the edges is linearly proportional
to a, while for a> L, the accumulation is independent of a.
(iv) While a(x)~x for a<<L,, spin accumulation is signifi-
cant only within the spin diffusion length from the edges
when a> L.

A question now arises: How universal (i.e., independent
of boundary conditions) is the qualitative behavior discussed
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above? To answer this question we introduce different
boundary conditions (BC II), describing the physics of car-
rier injection at x=0 and x=a, while assuming vanishing spin
currents at the edges: n(x=0)=n;, n(x=a)=ny; J; (x=0)
=J, (x=a)=0. These conditions mimic the case of a p-doped
base in a pnp spin-polarized transistor,'> where the electron
injection level can be controlled by the biases to the emitter
and collector. In the case discussed here the longitudinal cur-
rent would flow perpendicular to the transistor current, which
would thus be spin polarized due to the extrinsic SHE.
The vanishing boundary conditions for J;, reduce to
$(x=0)=={gEn,/kgT and $(x=a)=—{qEn,/kgT. Solving
Egs. (10) and (11) with the above boundary conditions gives
the spin and electron densities inside the slab

I /N 1
S(x) - kBT(LTz _ ng) |:L1 Cl(x) L2 Cz(x):| > (13)
and
1
n(x) —ny= m[@ﬁ _ L;2)S1(x)
- (L;* - L)S,()], (14)

where for convenience we have defined the functions

a—x X ) a
Cm:{nlcosh( )—nzcosh (—)}/smh(—),
Ly, Ly, Ly,

(15)

. a—x . X . a
Sl,zz[nlsmh( >+n2 smh(—)]/smh(—).
Ly, Ly, Ly,

(16)

Here we introduce new transverse spin-charge diffusion
lengths, L; and L,,

L3 =y+\y = (ILL,)> (17)
where
y=(1/12)[L;*+ L* + ({qElkgT)?]. (18)

There is a critical value of the field that separates the regimes
of strong and weak spin-charge coupling—Eqs. (10) and (11)
reduce to the ordinary spin and charge diffusion equations
when E<E,, E, where E=kzT/({qL,) and E,
=kgT/(LqL,) are the values of the critical fields with respect
to spin and charge diffusion. In this case y=(L;*+L;?%)/2
and L,,=L;,. When EXE, E,,y becomes dependent on
the electric field and it is in this regime the spin-field relation
deviates from linearity.

For quantitative understanding we take our semiconductor
to be GaAs at room temperature,'® with doping density
N,=3X10" cm™, and transverse size of =6 wm (which is
much greater than Lg). The S-O scattering strength is taken
to be ¢=107* reflecting weak S-O coupling in GaAs.
Finally, the boundary conditions for electron density are
n(0)=2x%10"/cm? and n(a)=5 % 10"3/cm?. Figure 1 shows
the profiles of spin and electron densities, as well as spin
polarization a=s/n, for several values of E. In contrast to the
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FIG. 1. Calculated spin density s, electron density n, and polar-
ization « for BC II. We have used =107 and applied electric field
strengths 0.125, 0.250, and 0.500 kV/cm. While a signature of the
extrinsic SHE is the opposite spin accumulation at the edges of the
sample, spin accumulation is large also inside.

purely diffusive behavior exhibited by n, spin density along
the slab exhibits weakly oscillatory behavior. Both spin den-
sity and spin polarization attain maximum magnitudes at the
edges. (We find that spin polarization is enhanced by a de-
cade when considering the extrinsic SHE at 77 K.) What is
interesting is, unlike in BC T [conclusion (iv)], that spin ac-
cumulation here is significant throughout the sample, not just
within L; from the edges. This oscillatory pattern is due to
the existence of spin-charge coupling that couples the spin
and charge diffusion lengths together into two spin-charge
diffusion lengths Eqgs. (17) and (18), so that the net spin-
density profile Eq. (13) can be thought of as the interference
between two spin-density profiles, each having a character-
istic spin-charge diffusion length L, or L,. Since, as a result
of spin Hall effect, each of these terms changes sign near the
boundaries, they interfere destructively and constructively
along the slab giving rise to the oscillatory pattern in Fig. 1
(similar arguments apply for the electron density, but since
each of these terms is always positive, they add up construc-
tively). We note that similar oscillatory behavior is also ob-
served in a number of recent papers'’ on the intrinsic SHE,
and in a recent experiment.® In the presence of magnetic field
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FIG. 2. Calculated spin current J, in x (top) and y (bottom)
directions for BC II and parameters as in Fig. 1.
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FIG. 3. Calculated spin polarization a at x=0 as a function of
electric field E for BC IT and £=10*, 1072, and 1. Only in the last
(unphysical) case « starts to saturate for large E, as the dependence
of L; and L, on E sets in.

(externally applied or effective field due to, e.g., Rashba S-O
coupling), the oscillatory behavior comes not only from the
coupling of spin and charge but also the coupling in between
the different components of the spin.!” Now spin current is
not conserved and flows inside the sample, being restricted
to zero by our choice of boundary conditions (see Fig. 2).
From Eq. (3) we obtain the spin current density in the x
direction

qv,E

Js(x) = 32 [$1(x) = S>(x)], (19)

-0 o2
(Li"-L,

and in the y direction
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Joy(x) 5 {lqu E* kT + 8,(L7* = L7)]C, (x)/L,

C(LP-L
—[qu B kT + 8,(Ly* = L) 1C(x)/Ly}. (20)

Spin current in the x direction flows in the direction of the
spin gradient, while the y component changes sign inside the
slab, reflecting the fact that spin-up and spin-down electrons
are deflected into opposite directions due to S-O scattering
by impurities. Finally, we wish to see at what value of the
electric field spin-charge diffusion lengths L, , will be modi-
fied and induce nonlinear behavior in «. Figure 3 shows
a(E) for different £. Spin polarization varies linearly with E,
except at electric field as large as 103 kV/cm and S-O cou-
pling =1, a clearly unphysical case considered here only to
illustrate the scope of linear behavior.

In conclusion, we have presented a drift-diffusion formal-
ism which takes into account S-O scattering and spin-
dependent carrier recombination. We have calculated spin
accumulation in the extrinsic spin Hall regime and intro-
duced S-O dependent spin-charge diffusion lengths. We have
found that spin accumulation is strongly influenced by
boundary conditions and thus by specific spintronic device
design. Our theory is applicable to any complex device set-
ting in which extrinsic spin Hall effect is expected to play a
role. We expect similar strong dependence of the “intrinsic”
SHE on boundary conditions too, making it difficult to dis-
tinguish intrinsic and extrinsic SHE in general.
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