61 research outputs found
Analyse der Veränderungen von Wavelet-transformierten elektromyographischen Signalen, wie sie beim Tragen einer Kniebandage entstehen
Der Vergleich von diversen Elektromyogrammen stellt eine wesentliche Anforderung an die Datenanalyse dar. Das Ziel der vorliegenden Arbeit ist es, eine Methode mit geringem mathematischem Aufwand vorzustellen, mit der kleine Veränderungen am Bewegungsapparat durch Auswertung des EMG-Signals einfach und mit einer hohen Sensitivität ermittelt und dargestellt werden können. Die Wavelettransformierten Elektromyogramme bilden Intensitätsbilder, die in einem Bildraum als Punkte dargestellt werden können. Die Distanz-analyse der Bildpunkte im Bildraum erlaubt es festzustellen, ob zwei Gruppen von Elektromyogrammen - im vorliegenden Falle diejenigen, die beim Gehen mit und ohne Kniebandage gemessen wurden - sich im Mittel signifikant unterscheiden. Die Methode definiert eine Distanz-Winkel-Darstellung und Differenz-Intensitätsbilder, die es erlauben, die Auftrennung optisch zu beurteilen. Es ist zu erwarten, daβ bei gröβeren Interventionen die Unterschiede deutlicher erscheinen werden. The comparison of electromyograms represents a challenge for data analysis. The aim of the project was to present a method that uses a minimal computational effort to resolve small but significant changes in the muscular activity that occur while walking with and without a knee brace. The wavelet transformed electromyograms were represented as intensity patterns that resolve the power of the signal in time and frequency. The intensity pattern of each electromyogram defines single points in a pattern space. The distance between these points in pattern space were used to detect and show the separation between the groups of electromyograms that were recorded while walking with and without a knee brace. The method proposes a distance versus angle representation to visually discriminate the intensity patterns. Once it has been shown that the differences are statistically significant, one can visualize the result in a difference intensity pattern that indicates at what time and at what frequency the electromyograms vary between the two conditions tested. It is to be expected that interventions that are more intrusive than a knee brace will reveal even more distinct difference
A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties.
INTRODUCTION: Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. METHOD: A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. RESULTS: The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. CONCLUSION: Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles)
SpeB of Streptococcus pyogenes Differentially Modulates Antibacterial and Receptor Activating Properties of Human Chemokines
BACKGROUND: CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11, are antibacterial for Streptococcus pyogenes. METHODOLOGY/PRINCIPAL FINDINGS: SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROalpha/CXCL1, GRObeta/CXCL2, GROgamma/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3alpha/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3alpha/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. CONCLUSIONS/SIGNIFICANCE: SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium
A compact electronic interface for electrochemical sensors
This work deals with the development of an electronic system for portable electrochemical sensing. The presented acquisition module is able to operate in amperometry, voltammetry and potentiometry modes. The system can be optionally linked to a mobile readout device (as smartphone, tablet, etc.) using the Smart Bluetooth 4.1. The system is suitable for a wide range of portable and wearable applications spreading from biomedical to environmental monitoring. The system features small sizes, small weight, and ultra-low power consumption
Photovoltaic Technology: The Case for Thin-Film Solar Cells
The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits. Although the main materials currently used or investigated and the associated fabrication technologies are individually described, emphasis is on silicon-based solar cells. Wafer-based crystalline silicon solar modules dominate in terms of production, but amorphous silicon solar cells have the potential to undercut costs owing, for example, to the roll- to-roll production possibilities for modules. Recent developments suggest that thin-film crystalline silicon (especially microcrystalline silicon) is becoming a prime candidate for future photovoltaics
Analyse der Veränderungen von Wavelet-transformierten elektromyographischen Signalen, wie sie beim Tragen einer Kniebandage entstehen = Analysis of wavelet transformed electromyographic signals that were altered by wearing a knee brace
The comparison of electromyograms represents a challenge for data analysis. The aim of the project was to present a method that uses a minimal computational effort to resolve small but significant changes in the muscular activity that occur while walking with and without a knee brace. The wavelet transformed electromyograms were represented as intensity patterns that resolve the power of the signal in time and frequency. The intensity pattern of each electromyogram defines single points in a pattern space. The distance between these points in pattern space were used to detect and show the separation between the groups of electromyograms that were recorded while walking with and without a knee brace. The method proposes a distance versus angle representation to visually discriminate the intensity patterns. Once it has been shown that the differences are statistically significant, one can visualize the result in a difference intensity pattern that indicates at what time and at what frequency the electromyograms vary between the two conditions tested. It is to be expected that interventions that are more intrusive than a knee brace will reveal even more distinct difference
- …