4 research outputs found

    Synthesis of Indomorphan Pseudo Natural Product Inhibitors of Glucose Transporters GLUT‐1 and ‐3

    Get PDF
    Bioactive compound design based on natural product (NP) structure may be limited due to partial coverage of NP‐like chemical space and biological target space. These limitations can be overcome by combining NP‐centered strategies with fragment‐based compound design through combination of NP‐derived fragments to structurally unprecedented “pseudo natural products” (pseudo‐NPs). We describe the design, synthesis and biological evaluation of a collection of indomorphan pseudo‐NPs that combine biosynthetically unrelated indole‐ and morphan‐alkaloid fragments. Biological investigation in a cell‐based screen for modulators of glucose uptake identified the indomorphane derivative Glupin as potent inhibitor of glucose uptake. Glupin selectively targets and upregulates both, glucose transporters GLUT‐1 and GLUT‐3. Glupin suppresses glycolysis, reduces the levels of glucose‐derived metabolites and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT‐1 and GLUT‐3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity

    Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction

    No full text
    Tschapalda K, Streitner N, Voß C, Flaschel E. Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2009;84(1):199-204.The separation of structurally related impurities from pharmaceutical plasmid DNA by highly scalable purification techniques is a challenge for biochemical engineering. Next to RNA, proteins, and lipopolysaccharides, the chromosomal DNA of the plasmid replicating host has to be removed. Here, we describe the application of reverse micellar extraction for the separation of chromosomal from plasmid DNA. By applying different procedures for alkaline lysis, bacterial lysates with different amounts of chromosomal DNA were generated. A reverse micellar extraction step enabled us to deplete the concentration of this impurity below the required level of 50 mg g(-1) of plasmid DNA with almost complete plasmid recovery
    corecore