58 research outputs found

    Distributive politics and regional development: assessing the territorial distribution of Turkey’s public investment

    Get PDF
    Turkey is often perceived as a country with low bureaucratic capacity and prone to political manipulation and ‘pork-barrel’. This article tests whether this is the case, by analysing the extent to which politics, rather than equity and efficiency criteria, have determined the geographical allocation of public investment across the 81 provinces of Turkey between 2005 and 2012. The results show that although the Turkish government has indeed channelled public expenditures to reward its core constituencies, socioeconomic factors remained the most relevant predictors of investment. Moreover, in contrast to official regional development policy principles, we uncover the concentration of public investment in areas with comparatively higher levels of development. We interpret this as the state bureaucracy’s intentional strategy of focussing on efficiency by concentrating resources on ‘the better off among the most in need’

    Europeanization without substance? EU-Turkey relations and gender equality in employment

    Get PDF
    This paper focuses on EU-Turkey relations through gender-related employment policy practices. We argue that Turkey is undergoing a process of ‘Europeanization without substance’, in which vague commitments and policy initiatives to enhance female labour force participation coexist uneasily with a contravening political discourse. This is not merely the result of a stalemate in accession negotiations, nor does it stem from the diversity of employment practices across the Union. It rather results from the deliberative discourses used by Turkey’s political leadership to selectively appropriate certain aspects of Europeanization to further a politically motivated agenda that, in essence, negates gender equality altogether. This, we argue in turn, is reflected in a set of practices, policy initiatives, and public statements that make substantive progress in EU-Turkey relations harder. This process is facilitated by the diminishing emphasis placed by the EU on gender equality in employment as manifested by the evolution of gender equality practices at EU level and reinforced by austerity-led policies during the economic crisis

    Connection between Telomerase Activity in PBMC and Markers of Inflammation and Endothelial Dysfunction in Patients with Metabolic Syndrome

    Get PDF
    Metabolic syndrome (MS) is a constellation of metabolic derangements associated with vascular endothelial dysfunction and oxidative stress and is widely regarded as an inflammatory condition, accompanied by an increased risk for cardiovascular disease. The present study tried to investigate the implications of telomerase activity with inflammation and impaired endothelial function in patients with metabolic syndrome. Telomerase activity in circulating peripheral blood mononuclear cells (PBMC), TNF-α, IL-6 and ADMA were monitored in 39 patients with MS and 20 age and sex-matched healthy volunteers. Telomerase activity in PBMC, TNF-α, IL-6 and ADMA were all significantly elevated in patients with MS compared to healthy volunteers. PBMC telomerase was negatively correlated with HDL and positively correlated with ADMA, while no association between TNF-α and IL-6 was observed. IL-6 was increasing with increasing systolic pressure both in the patients with MS and in the healthy volunteers, while smoking and diabetes were positively correlated with IL-6 only in the patients' group. In conclusion, in patients with MS characterised by a strong dyslipidemic profile and low diabetes prevalence, significant telomerase activity was detected in circulating PBMC, along with elevated markers of inflammation and endothelial dysfunction. These findings suggest a prolonged activity of inflammatory cells in the studied state of this metabolic disorder that could represent a contributory pathway in the pathogenesis of atherosclerosis

    γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein

    Trafficking through COPII Stabilises Cell Polarity and Drives Secretion during Drosophila Epidermal Differentiation

    Get PDF
    BACKGROUND: The differentiation of an extracellular matrix (ECM) at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system

    Duox, Flotillin-2, and Src42A Are Required to Activate or Delimit the Spread of the Transcriptional Response to Epidermal Wounds in Drosophila

    Get PDF
    The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration

    Overview of physics results from NSTX

    Full text link

    Reliability and Maintainability Analysis of Bread Production Line

    No full text
    The statistical analysis of the bread production line of the failure and repair data at machine and line levels was displayed. The experiment covers a period of twenty-five months. The best fit of the failure data between the common theoretical distributions was found and its parameters were computed. The reliability and hazard rate modes for all machines and the entire production line were calculated as well. The models could prove to be a useful tool to assess the current conditions, and to predict the reliability for upgrading the maintenance policy of the production line. It was pointed out that (a) the availability of the bread production line is 90.74% and went down to 86.76% because the equipment's failures cause an additional production gap in the line, (b) the 53.5% of all failures occurred at the bread machine, cooling tower machine, and volumetric-divider machine, and (c) the machines of the bread production line that displayed increasing hazard rate functions were identified. This analysis will be very useful in terms of identifying the occurring and latent problems in manufacturing process of bread and improve it
    corecore