143 research outputs found

    Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program II: Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu

    Full text link
    To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R∌R \sim\,115000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard Local Thermodinamyc Equilibrium (LTE) analysis using measured Equivalent Widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. We find that thick disk stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y when compared to the thin disk stars. We also discovered that the previously identified high-α\alpha metal-rich population is also enhanced in Cu, Zn, Nd and Eu with respect to the thin disk but presents Ba and Y abundances lower on average, following the trend of thick disk stars towards higher metallities and further supporting the different chemical composition of this population. The ratio of heavy-s to light-s elements of thin disk stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disk metallicities. However, the opposite trend found for thick disk stars suggests that intermediate-mass AGB stars played an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disk at super solar metallicities which could be caused by the contribution of metal-rich AGB stars. (short version)Comment: 20 pages, 19 figures, accepted by A&

    New and updated stellar parameters for 71 evolved planet hosts. On the metallicity - giant planet connection

    Full text link
    It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity - giant planet connection for evolved stars. A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (log⁥g<3.0\log g < 3.0\,dex) with respect to red giants without planets.Comment: 22 pages, 10 figures, 12 tables, accepted to A&

    NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR

    Full text link
    Context: Effective temperature, surface gravity, and metallicity are basic spectroscopic stellar parameters necessary to characterize a star or a planetary system. Reliable atmospheric parameters for FGK stars have been obtained mostly from methods that relay on high resolution and high signal-to-noise optical spectroscopy. The advent of a new generation of high resolution near-IR spectrographs opens the possibility of using classic spectroscopic methods with high resolution and high signal-to-noise in the NIR spectral window. Aims: We aim to compile a new iron line list in the NIR from a solar spectrum to derive precise stellar atmospheric parameters, comparable to the ones already obtained from high resolution optical spectra. The spectral range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H, and K bands. Methods: Our spectroscopic analysis is based on the iron excitation and ionization balance done in LTE. We use a high resolution and high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as a starting point to compile the iron line list. The oscillator strengths (log gf) of the iron lines were calibrated for the Sun. The abundance analysis was done using the MOOG code after measuring equivalent widths of 357 solar iron lines. Results: We successfully derived stellar atmospheric parameters for the Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived stellar atmospheric parameters using the same line list as for the Sun. The spectrum was obtained from the CRIRES- POP database. The results are compatible with the ones found in the literature, confirming the reliability of our line list. However, due to the quality of the data we obtain large errors.Comment: 9 pages and 9 figure

    SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs I. New atmospheric parameters and masses for 48 stars with planets

    Full text link
    Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. In this paper we present new precise atmospheric parameters for a sample of 48 stars with planets. We then take the opportunity to present a new catalogue of stellar parameters for FGK and M stars with planets detected by radial velocity, transit, and astrometry programs. Stellar atmospheric parameters and masses for the 48 stars were derived assuming LTE and using high resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths for a list of iron lines and making use of iron ionization and excitation equilibrium principles. For the catalog, and whenever possible, we used parameters derived in previous works published by our team, using well defined methodologies for the derivation of stellar atmospheric parameters. This set of parameters amounts to over 65% of all planet host stars known, including more than 90% of all stars with planets discovered through radial velocity surveys. For the remaining targets, stellar parameters were collected from the literature.Comment: Astronomy & Astrophysics, accepted for publicatio

    The AMBRE Project: searching for the closest solar siblings

    Full text link
    Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Sun's birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.Comment: Accepted for publication in A&

    Deriving precise parameters for cool solar-type stars. Optimizing the iron line list

    Full text link
    Temperature, surface gravity, and metallicitity are basic stellar atmospheric parameters necessary to characterize a star. We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences with the Infrared Flux Method are higher, as presented in previous work. Our spectroscopic analysis is based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis is determined using the code MOOG. We optimize the line list using a cool star with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM shows that the differences for the cooler stars are significantly smaller and more homogeneously distributed than in previous studies for stars with temperatures below 5000 K. We use the new line list to re-derive parameters for some of the cooler stars that host planets. Finally, we present the impact of the new temperatures on the [Cr I/Cr II] and [Ti I/Ti II] abundance ratios that previously showed systematic trends with temperature.Comment: 11 pages, 14 figures, accepted to A&

    Search for lithium-rich giants in 32 open clusters with high-resolution spectroscopy

    Full text link
    Lithium-rich giant stars are rare and their existence challenges our understanding of stellar structure and evolution. We profit from the high-quality sample gathered with HARPS and UVES, in order to search for Li-rich giants and to identify the Li enrichment mechanisms responsible. We derive stellar parameters for 247 stars belonging to 32 open clusters, with 0.07 Ga < ages < 3.6 Ga. We employed the spectral synthesis technique code FASMA for the abundance analysis of 228 stars from our sample. We also determined ages, distances, and extinction using astrometry and photometry from Gaia and PARSEC isochrones to constrain their evolutionary stage. Our sample covers a wide range of stellar masses from 1 to more than 6 solar masses where the majority of the masses are above 2 solar masses. We have found 14 canonical Li-rich giant stars which have experienced the first dredge-up. This corresponds to 6% of our total sample, which is higher than what is typically found for field stars. Apart from the canonical limit, we use the maximum Li abundance of the progenitor stars as a criterion for Li enrichment. We find Li enhancement also among eight stars which have passed the first dredge up and show strong Li lines based on the fact that stars at the same evolutionary stage in the same cluster have significantly different Li abundances. We confirm that giants with higher Li abundance correspond to a higher fraction of fast-rotating giants, suggesting a connection between Li enhancement and stellar rotation as predicted by stellar models. Our Li-rich giants are found in various evolutionary stages implying that no unique Li production mechanism is responsible for Li enrichment but rather different intrinsic or external mechanisms can be simultaneously at play.Comment: accepted in A&A, online data will be available in CD

    SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period

    Get PDF
    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions such as their dominant formation and migration process, as well as their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allow us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derive the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot jupiters but not for the longer period planets. We also derive a first measurement on the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29 +/- 0.17 %. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving a moderate irradiation are not inflated but we find that they are in average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the Iron abundance of the host star, which needs more detections to be confirmed.Comment: To appear in Astronomy and Astrophysic
    • 

    corecore