42 research outputs found

    Electrochemical membrane reactor for oxygen separation after CO2 plasmolysis

    Get PDF

    Rational Design of Photoelectrodes for the Fully Integrated Polymer Electrode Membrane–Photoelectrochemical Water-Splitting System: A Case Study of Bismuth Vanadate

    Get PDF
    Photoelectrochemical (PEC) reactors based on polymer electrolyte membrane (PEM) electrolyzers are an attractive alternative to improve scalability compared to conventional monolithic devices. To introduce narrow band gap photoabsorbers such as BiVO4 in PEM-PEC system requires cost-effective and scalable deposition techniques beyond those previously demonstrated on monolithic FTO-coated glass substrates, followed by the preparation of membrane electrode assemblies. Herein, we address the significant challenges in coating narrow band gap metal-oxides on porous substrates as suitable photoelectrodes for the PEM-PEC configuration. In particular, we demonstrate the deposition and integration of W-doped BiVO4 on porous conductive substrates by a simple, cost-effective, and scalable deposition based on the SILAR (successive ionic layer adsorption and reaction) technique. The resultant W-doped BiVO4 photoanode exhibits a photocurrent density of 2.1 mA·cm–2, @1.23V vs RHE, the highest reported so far for the BiVO4 on any porous substrates. Furthermore, we integrated the BiVO4 on the PEM-PEC reactor to demonstrate the solar hydrogen production from ambient air with humidity as the only water source, retaining 1.55 mA·cm–2, @1.23V vs RHE. The concept provides insights into the features necessary for the successful development of materials suitable for the PEM-PEC tandem configuration reactors and the gas-phase operation of the reactor, which is a promising approach for low-cost, large-scale solar hydrogen production.</p

    Plasma activated electrolysis for cogeneration of nitric oxide and hydrogen from water and nitrogen

    Get PDF
    With increasing global interest in renewable energy technology given the backdrop of climate change, storage of electrical energy has become particularly relevant. Most sustainable technologies (e.g., wind and solar) produce electricity intermittently. Thus, converting electrical energy and base molecules (i.e., H2O, N2) into energy-rich ones (e.g., H2, NH3) or chemical feedstock (e.g., NO) is of paramount importance. While H2O splitting is compatible with renewable electricity, N2 fixation is currently dominated by thermally activated processes. In this work, we demonstrate an all-electric route for simultaneous NO and H2 production. In our approach, H2O is reduced to H2 in the cathode of a solid oxide electrolyzer while NO is produced in the anode by the reaction of O2– species (transported via the electrolyte) and plasma-activated N2 species. High faradaic efficiencies up to 93% are achieved for NO production at 650 °C, and NO concentration is &gt;1000 times greater than the equilibrium concentration at the same temperature and pressure.</p

    Combining Through-Thickness Reinforcement and Self-Healing for Improved Damage Tolerance and Durability of Composites

    Get PDF
    A study was undertaken to develop a prototype method for adding through-thickness hollow glass tubes infused with uncured resin and hardener in a carbon Z-pin through-thickness reinforcement field embedded in a composite laminate. Two types of tube insertion techniques were attempted in an effort to ensure the glass tubes survived the panel manufacturing process. A self-healing resin was chosen with a very low viscosity, two component, liquid epoxy resin system designed to be mixed at a 2-to-1 ratio of epoxy to hardener. IM7/8552 carbon epoxy double cantilever beam (DCB) specimens were cut from the hybrid Z-pin and glass tube reinforced panels and tested. In-situ injection of resin and hardener directly into glass tubes, in a staggered pattern to allow for 2-to-1 ratio mixing, resulted in partial healing of the fracture plane, but only if the injection was performed while the specimen was held at maximum load after initial fracture. Hence, there is some potential for healing delamination via resin and hardener delivered through a network of through-thickness glass tubes, but only if the tubes are connected to a reservoir where additional material may be injected as needed

    Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides

    Get PDF
    Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.</p

    Zeolites for CO2–CO–O2 Separation to Obtain CO2-Neutral Fuels

    Get PDF
    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO2 into energy and chemical cycles by converting CO2 into CO and O2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O2 and residual CO2. Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer–Tropsch reactions, can lead to the production of CO2-neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.</p

    Feasibility study on the use of a hierarchical lattice architecture for helmet liners

    No full text
    Helmets are the most important piece of protective equipment for motorcyclists. The liner of the helmet is the main part of the helmet which dissipates the impact energy and mitigates the load transmitted to the head. Therefore, optimizing the material that absorbs most of the impact energy would improve the helmet\u2019s protection capacity. It is known that the energy absorption of the helmet liner can be optimized by means of using liners with varying properties through the thickness, however currently the majority of used liners exhibit constant properties through the thickness. Advances in the field of topology optimization and additive manufacturing provide the ability of building complex geometries and tailoring mechanical properties. Along those lines, in the present work the feasibility of using a hierarchical lattice liner for helmets was studied. Finite element method was employed to study whether a hierarchical lattice liner could reduce the risk of head injuries in comparison to currently used liner materials. The results show that using a hierarchical lattice liner has the potential of significantly reducing the risk of head injury compared to a helmet with traditional EPS liner and could potentially be considered as the new generation of energy absorbing liners for helmets
    corecore