

Cerpolech

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

Power-to-X: On the development of a KEROGREEN reactor module for sustainable CO production and the challenges in CO₂ plasmolysis and gas separation

<u>S. Welzel</u>, A. Goede, M.C.M. van de Sanden, M. Tsampas

DUTCH INSTITUTE FOR FUNDAMENTAL ENERGY RESEARCH, EINDHOVEN, THE NETHERLANDS

Trend workshop: "Plasma(-catalysis) in gas conversion processes"

18th International Conference on Plasma Surface Engineering 12/09/2022 HYGEAR

INERATEC

The KEROGREEN project

KIT / Energy Lab(www.elab2.kit.edu)

NGRGY

© 2019 DIFFER

Kerogreen aim: Demonstation of the full chain process from renewable, electricity, CO_2 (captured) and H_2O to kerosene.

- Research and optimisation of individual process steps TRL $(1-3) \rightarrow 4$
- Integration phase at Karlsruhe Institute of Technology \rightarrow >1 L per day
- Duration 2018-2022

PSE 2022 – 12/09/2022 – S. Welzel

KIT / IMV

- The **KEROGREEN** project
- Plasmolysis of CO₂
 - Scientific insights of microwave plasma based processes
 - Engineering constraints during process chain integration
- Oxygen separation
 - Solid Oxide Electrochemical Cell (SOEC) based approach
 - Potential & Challenges
- Summary

The KEROGREEN project

Main project challenges

- System integration of different technologies into one container sized assembly
- Oxygen separation after plasmolysis by SOEC
- Energy and carbon efficiency of the full chain

Main upstream (DIFFER) challenges

- Plasma modeling and optimisation
- Plasma upscaling $1 \rightarrow 6 \text{ kW} (2450 \rightarrow 915 \text{ MHz})$
- (Material) Requirements for using SOECs as oxygen separator
- SOEC upscaling from 1 W to 1500 W

PSE 2022 - 12/09/2022 - S. Welzel

www.kerogreen.eu

FINAL EVENT

27th September 2022 – 8:45-15:15 hrs @ KIT, Karlsruhe + remote

Current challenges in Sustainable Aviation Fuel synthesis Power-to-X enabling technology combined with Plasma Technology

> Get an overview of the latest KEROGREEN results Exchange ideas and discuss with invited speakers On-site visit to KIT Energy Lab 2.0

>>> Registration: <u>https://www.kerogreen.eu/249.php</u> <<<

Cerpolech HYGEAR

C

INFRA

Why CO₂ plasmolysis?

CO_2 plasmolysis: 2 CO_2 → 2CO + O_2

- Input: CO₂ + renewable electricity
- Output: CO_2 , CO and O_2
- High efficiencies, ...
- Main challenge downstream: O₂ separation

PSE 2022 – 12/09/2022 – S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021

- Strong pressure dependence
- Low \rightarrow High confinment modes

PSE 2022 - 12/09/2022 - S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021

- Strong pressure dependence
- Low \rightarrow High confinment modes

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. 2019 Plasma Sources Sci. Technol. **28** (2019) 115022

PSE 2022 – 12/09/2022 – S. Welzel AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. 2019 Plasma Sources Sci. Technol. 28 (2019) 115022

in gas temperature (up to 6000 K)

PSE 2022 – 12/09/2022 – S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. 2019 Plasma Sources Sci. Technol. **28** (2019) 115022

CO₂ plasmolysis: Flow pattern

- Strong pressure dependence
- Complex flow pattern

CO₂ plasmolysis: Reactor Model

- Strong pressure dependence
- Complex flow pattern

PSE 2022 - 12/09/2022 - S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Reactor Model Results

PSE 2022 - 12/09/2022 - S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Reactor Model Results

- Mode transition reflected:
 - in conversion efficiency α
 - in energy efficiency η

PSE 2022 - 12/09/2022 - S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

100

200

300

400

pressure (mbar)

500

600

700

0.0

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

0.0

0

100

200

300

400

pressure (mbar)

500

600

700

700

CO₂ plasmolysis: Reactor Model Results

in energy efficiency η

PSE 2022 - 12/09/2022 - S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Reactor & Plasma Model Results

- L-Mode (homogeneous):
- H-Mode (constricted):

production limited, «low» gas temperatures, low ionisation degree «high» gas temperatures and ionisation degrees

– PSE 2022 – 12/09/2022 – S. Welzel

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819 P. Viegas et al. Plasma Sources Sci. Technol. 29, 2020, 105014

CO₂ plasmolysis: Temperature dependence

- At «intermediate» temperatures (~ 3000 K) atomic oxygen production inhibited
- At «low» temperatures (1000-2000 K) dominant CO recombination with re-heating of gas
- \rightarrow Downstream active plasma-zone: efficient gas cooling and product dilution is desired

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021

CO₂ plasmolysis: Design criteria

(Scientific) Design Criteria

... to maximise $\alpha \& \eta$ (= indicated area)

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Design criteria

(Scientific) Design Criteria & Consequences

- ... to maximise $\alpha \& \eta$ (= indicated area)
- i. «low(er)» pressure regime: ~ 150 mbar

ii. efficient gas cooling downstream

iii. \rightarrow Diluted gas stream

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Design criteria

$$\mathbf{\eta} = \boldsymbol{\alpha} \cdot \frac{H}{E_{spec}} = C \cdot \frac{F_{COT}}{P_{RF}}$$

(Scientific) Design Criteria & Consequences

- ... to maximise $\alpha \& \eta$ (= indicated area)
- «low(er)» pressure regime: ~ 150 mbar
 - Vacuum pump (compression) required
 - \Rightarrow Gas mixture (CO/O) is explosive \rightarrow dilution needed
 - Dependence on (sharp) mode transitions
 - iv. → Control challenge
- ii. efficient gas cooling downstream
 - Achievable with
 - High flow rates (and/or expansion)
 - ii. High surface areas
 - \rightarrow High flow rates reduce conversion efficiency α
 - → Material challenge: need to withstand >> 1000 K
- iii. \rightarrow Diluted gas stream
 - (re-)circulation of «inert» gas and bigger size of all components

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: KEROGREEN implementation

PSE 2022 - 12/09/2022 - S. Welzel

(Scientific) Design Criteria & Consequences

- i. «low(er)» pressure regime: ~ 150 mbar
 - Note: Vacuum pump (compression) required
 - \Rightarrow Gas mixture (CO/O) is explosive \rightarrow dilution needed
 - Dependence on (sharp) mode transitions
 - iv. → Control challenge («flattened» by higher flow rates)
- ii. efficient gas cooling downstream
 - Achievable with

ii.

- High flow rates (expansion)
- ii. High surface areas
- \rightarrow High flow rates reduce conversion efficiency α
- iii. → Material challenge: need to withstand >> 1000 K

iii. \rightarrow Diluted gas stream

(re-)circulation of «inert» gas and bigger size of all components

CO₂ plasmolysis: KEROGREEN implementation

CO₂ plasmolysis: KEROGREEN implementation

CO₂ plasmolysis: Reactor Model & Practise

Heat map = calculations for final applicator/reactor configuration with special thanks to F. Peeters, based on Wolf et al. J. Phys. Chem. C 2020, 124, 16806–16819

CO₂ plasmolysis: Reactor Model & Practise

Preliminary results from commissioning under CO₂ plasma conditions

- Experimental data are close to calculations within 10%
- 9 10 NI/min CO output has been shown
- Stability of operation > 1 hour
- "Operator"-free

Downstream Challenges: Dilution & Separation

SOEC as oxygen separator: Concept

Plasma electrode reactions

- $O_2 + 4e^- \rightarrow 2O^{2-}$ (desired)
- $CO_2 + 2e^- \rightarrow CO + O^{2-}$ (neutral)
- 2CO + $O_2 \rightarrow 2CO_2$ (unwanted)

SOEC as oxygen separator: Complex requisites

Functionalities

Plasma electrode

Unconventional mixture $(CO_2/CO/O_2)$ Poor CO activity

Electrolyte

Oxygen ion conductivity

Low resistance \rightarrow thin

• For both electrodes:

Mixed electronic & ionic conductivity Low overpotential losses (gas composition, T)

Overall

High oxygen fluxes (increased T)

Stability

Reduced CO recombination (reduced T)

Plasma electrode reactions

- $O_2 + 4e^- \rightarrow 2O^{2-}$ (desired)
- $CO_2 + 2e^- \rightarrow CO + O^{2-}$ (neutral)
- $2CO + O_2 \rightarrow 2CO_2$ (unwanted)

DIFFER

SOEC as oxygen separator: Steps

SOEC as oxygen separator: single cell level

Key findings

- OCV conditions
 - As the operation T is increased CO losses (via CO oxidation) are also increased
- Under polarization
 - Oxygen removal is favoured at high T due to higher current densities.
 - Increasing the applied potential is a knob to increase the amount of CO via CO₂ electrolysis.
 - Faradaic efficiency is high (> 90%)

Summary / Take home messages

- KEROGREEN project
 - CO_2 & electricity \rightarrow Kerosene
 - Public event 27/09/2022
- Plasmolysis of CO₂
 - Conversion process dominated by strong and sharp gradients
 - Scientifically desired conditions form challenges for technical implementation
 - Standalone, operator-free, "plug-&-play" gas conversion module realised
 - Heat integration not (yet) considered
- Oxygen separation
 - SOEC approach promising on cell level
 - Testbenches realised for different scales
 - Upscaling and process integration seems to need radically new stack design

Plasmolysis applicator

Integrated plasma + separator module

O DIFFER

M. Tsampas DIFFER, CEPEA, De Zaale 20, 5612 AJ Eindhoven, The Netherlands ⊠ M.Tsampas@differ.nl www.differ.nl

S. Welzel DIFFER, SFFI, De Zaale 20, 5612 AJ Eindhoven, The Netherlands ⊠ S.Welzel@differ.nl www.differ.nl

Any Questions ?

