
 1 

Plasma activated electrolysis for cogeneration of 

nitric oxide and hydrogen from water and nitrogen  

Hrishikesh Patel a,1, Rakesh K. Sharma a,1, Vasileios Kyriakou a, Arunkumar Pandiyan a, Stefan 

Welzel a, Mauritius C.M. van de Sanden a, b, Mihalis N. Tsampas a,* 

 
aDutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ, Eindhoven, 

the Netherlands 

bDepartment of Applied Physics, Eindhoven University of Technology (TU.e), 5600 MB, 

Eindhoven, the Netherlands 

Corresponding Author 

* Mihalis N. Tsampas. Email m.tsampas@differ.nl, Phone +31403334820  

ABSTRACT 

With increasing global interest in renewable energy technology in the backdrop of climate change, 

storage of electrical energy has become particularly relevant. Most sustainable technologies (e.g. 

wind, solar) produce electricity intermittently. Thus, converting electrical energy and base 

molecules (i.e. H2O, N2) into energy rich ones (e.g. H2, NH3) or chemical feedstock (e.g. NO) is 

of paramount importance. While H2O splitting is compatible with renewable electricity, N2 

fixation is currently dominated by thermally activated processes. In this work, we demonstrate an 

all-electric route for simultaneous NO and H2 production. In our approach, H2O is reduced to H2 

in the cathode of a solid oxide electrolyser while NO is produced in the anode by the reaction of 

O2- species (transported via the electrolyte) and plasma activated N2 species. High faradaic 
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efficiencies up to 93% are achieved for NO production at 650 oC and NO concentration is >1000 

times higher than the equilibrium concentration at same temperature and pressure.  

 

 

One of the greatest challenges of our era is the substitution of fossil feedstock as energy sources 

with renewable energy ones. However, due to their intermittent nature and the harvesting in the 

form of electricity, their direct introduction into the value chain of e.g. chemical industry remains 

challenging. Therefore, technologies based on renewable electricity that can transform base 

molecules (i.e. H2O, N2, CO2) into energy or chemical rich ones have attracted tremendous interest 

[1-3]. In the transition from low to high energy molecules or to valuable chemical feedstock (e.g. 

H2, NH3, CO, NO), the activation of chemical bonds (e.g. N≡N, O=C=O) is a major issue that has 

to be addressed [1-3].  

Among the three base molecules, N2 is by far the least reactive since the N≡N triple bond is very 

strong and difficult to activate due to the absence of a permanent dipole [4]. Consequently, even 

with the best available catalysts, a substantial energy input is required to activate N2. At industrial 

level nitrogen fixation is realized via ammonia and nitric oxide synthesis [5-8].  

In the Haber-Bosch (HB) synthesis of ammonia, heterogeneous Fe- or Ru-based catalysts are used 

at temperatures from 400 to 500o C in order to cleave the N≡N bond and convert N2 and H2 to NH3 
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at realistic rates. In this temperature range, the NH3 yield is very low at atmospheric pressure due 

to thermodynamic limitations and thus HB synthesis is carried out at 100-250 bar for shifting the 

equilibrium towards ammonia synthesis [5]. For a fully optimized and integrated HB process 

energy efficiencies as low as 0.48 MJ/N-mol are reported [5]. 

N2 fixation can also occur in the form of nitric oxide (NO) which is a valuable chemical feedstock 

due to its commercial relevance especially for use in fertilizers, synthetic fibers, plastics and in 

drugs for cancer or inflammatory disorders [7-10]. NO is an intermediate in the industrial 

production of nitric acid, one of the basic industrial chemicals with annual world production of 

about 60 million metric ton/year [10]. 

Most of today’s synthetic NO is made by oxidizing ammonia, while NO formation in N2 and O2 

atmosphere takes place at high temperatures (>2000 oC) [7,8]. Both processes are based on thermal 

catalysis with a significant CO2 footprint and thus electrification of N2 fixation is highly desirable 

and remains one of the biggest challenges.  

Gas discharges are electrically driven processes and are easy to combine with intermittent 

electricity because of their fast response times. A gas discharge (plasma) is an ionized gas and 

represents a reactive environment due to the presence of charges, excited species and radicals. 

Plasmas are reported as one of the most promising approaches for the activation of N≡N bond [11-

14]. Particularly, nitrogen plasmas produced by high or radio frequency (RF) sources at reduced 

pressures are well-known for efficiently producing vibrationally excited molecules which further 

dissociate into atomic nitrogen [15-17]. The relative concentration of the latter species in the 

afterglow of the plasma might be as high as 1000 ppm [17]. 

Plasma based processes have gained a lot of attention for N2 fixation, starting from the oldest 

electric arc based Birkeland-Edye process [18] to different types of plasmas and reactor 
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configurations [19-23]. Moreover, the combination of gas discharges with catalytic materials has 

been studied and reported for various catalysts and catalyst supports [24-29]. In the same context 

the tremendous enabling potential of (e.g. nitrogen) plasmas in combination with poor activity 

catalysts in conventional thermal catalysis has been demonstrated [13,29]. Recently, the 

combination of a plasma with aqueous or polymer electrolyte based electrochemical systems has 

been reported [30,31]. Nevertheless, to the best of our knowledge no such effort has been attempted 

for NO synthesis by N2 and H2O.  

In this work, we demonstrate a novel approach for the cogeneration of NO and H2 from H2O and 

plasma activated N2 gas using a hybrid plasma activated solid oxide electrolysis cell (SOEC). The 

novelty is related to the fact that the plasma activated nitrogen species are generated separately 

from the oxygen species: the oxygen to form NO is only provided through solid oxide membrane 

contacting the downstream part of a N2 plasma. The oxygen ions permeating the membrane is 

produced during water reduction to H2 in the cathodic compartment (which is isolated from the 

anodic one with a tubular electrolyte membrane). This setup therefore co-generates the products, 

NO and H2 in an integrated electrically driven way in two isolated compartments i.e. NO in the 

plasma compartment and H2 in the inner compartment (cf. Figure 1 for details). The main focus of 

the work is in the NO production however it is worthwhile to note that hydrogen is also a 

commercially viable compound in addition to being a topic of research for the hydrogen economy. 

Also note that the separation of the products (NO and H2) from their corresponding gas streams, 

i.e. N2 and H2O respectively, can be easily realized nowadays by standard processes (i.e. 

adsorption and condensation [32]). 

Our hybrid reactor (Figure 1) consists of an inductive coil which is connected to the matching 

network of a RF power supply. The coil encloses a quartz tube that is mounted on both ends to two 
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vacuum flanges. These flanges serve as mechanical support for both the quartz tube and the tubular 

solid oxide electrolysis cell (SOEC) and provide electrode connections with the external circuit. 

In what follows we refer to the inner volume of the tubular SOEC as inner compartment while the 

active and passive zone of the plasma in the quartz tube is referred to as plasma compartment. The 

reactor is equipped with two inlets (for H2O and N2) and two outlets one for each compartment 

(Figure 1). The SOEC is based on an oxygen ion conducting tubular membrane (made from yttria 

stabilized zirconia, YSZ) with one end closed on which porous Pt films (Figure S1) have been 

deposited on both sides of the tube. As depicted in the inset of Figure 1, the inner one serves as a 

cathode (counter-electrode) while the outer as an anode (plasma-electrode). H2O is fed in the inner 

compartment (1 bar) of the tubular cell while N2 is used as feed gas in the plasma compartment (5 

mbar) where activation takes place by the RF plasma source.  

 
Figure 1: Schematic representation of hybrid plasma activated solid oxide electrolyte cell (SOEC) 

reactor setup. 

 

Figure 2 depicts schematically the electrochemical reactions in each compartment under 

conventional and plasma activated SOEC operation. In both cases water reduction to hydrogen 

takes place in the cathode (inner compartment) with the simultaneous generation of oxygen ions 

(eq.1) on the triple phase boundaries (TPB), defined as the region where electrolyte (YSZ), gas, 

and catalyst (Pt) regions contact. These oxygen ions under the load (positive potential at anode) 
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move from the point of generation to anode through electrolyte (YSZ: O2- ionic conductor), where 

depending upon the SOEC operation, two competing reactions can take place. In conventional 

SOEC operation oxygen evolution reaction is predominant (eq.2) while in plasma activated SOEC 

operation, oxygen species can react with activated nitrogen (noted as Nx
*) for the formation of 

nitric oxides (eq.3). The latter reaction is the key novelty of this contribution. 

Cathode: 2H2O + 4e-  2H2 + 2O2-(YSZ)      eq.1 

Anode:  Plasma OFF: 2O2-(YSZ) + N2  O2 + N2 +4e-    eq.2 

  Plasma ON: xO2-(YSZ) + Nx
*  xNO +2xe- ̀     eq.3  

 

Figure 2: Operation principles of conventional (left) and activated (right) SOEC electrolysis.  

 

Unlike conventional plasma catalysis, that requires the co-activation of reactants, our unique 

approach ensures that all the energy of the plasma is directed towards activating the nitrogen. 

Therefore, this ‘dual chamber’ approach has the inherent advantage of separating both the reactants 

and the most important process steps in space, namely, the activation or dissociation of the base 

molecules and the formation of products, respectively.  



 7 

Figure 3 depicts the production rate of NO, O2 and H2 at 650 °C upon step change in the applied 

current (20 mA) and plasma (80 W) sequentially. In order to perform this experiment under 

conditions of fixed O2- fluxes, water splitting has been carried out at 20 mA applied current (i.e. 

galvanostatic mode). NO, O2 and H2 were measured using a quadrupole mass spectrometer. Under 

open-circuit (I = 0) and plasma off conditions, no reaction takes place in either compartments. 

Upon applying current at t = 10 min, (I = 20 mA) in the absence of plasma leads to only water 

electrolysis, producing hydrogen (~104 nmol H2/s) and oxygen (~50 nmol O2/s) in the two 

chambers. The rate of hydrogen production is double the rate of oxygen production without plasma 

as stoichiometrically expected whilst no NOx (i.e. NO, NO2 or N2O) synthesis has been observed. 

Thus, there is no electrochemical NOx synthesis. Upon plasma ignition at t = 20 min, NO formation 

starts taking place with a simultaneous decrease of the oxygen evolution and a steady state is 

reached after ~2 min. Rate of NO production (63 nmol NO/s) is roughly double the rate of oxygen 

consumption (31 nmol O2/s) which is consistent with reaction stoichiometry. 

 

Figure 3: Production rate of NO, O2 and H2 at 650 °C upon sequential step changes of the applied 

current (20 mA) and the plasma (80 W).  
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Moreover, except NO, no other products such as NO2 and N2O were observed throughout the 

experiment. Once plasma is switched off at t = 35 min, the NO production rate gradually returns 

to zero, while O2 formation returns to its initial value. By current interruption at t = 45 min, H2 and 

O2 signals drop to zero. In essence, as shown by this transient experiment, the selective production 

of NO (63 nmol NO/s) without the formation of other byproducts occurs only in the presence of 

plasma verifying that it is clearly plasma activated process.  

 

Figure 4: Effect of current on the rate of NO (a) and H2 (b) production (c) faradaic efficiency of 

NO production and (d) Pt/YSZ/Pt cell voltage (black open symbols correspond to normal SOEC 

operation while orange filled symbols to plasma activated one). 
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Figure 4a depicts the effect of applied current under plasma activated nitrogen on the production 

rate of NO. Upon current application, oxygen ions arriving on the Pt/YSZ interface are diffused 

on the catalyst surface as adsorbates, where they can either react with activated nitrogen species 

for NO formation or with co-adsorbed oxygen species for the formation of molecular oxygen. At 

low current range (<20 mA) a linear increase of NO production with the applied current is 

observed, since the reaction is limited by the supply of oxygen species. In electrochemical cells, 

the reaction zone is limited in the vicinity of the triple (gas-catalyst-electrolyte) phase boundary. 

At higher currents NO formation reaches a saturation value which can be attributed to limited 

supply of activated nitrogen species on the TPB area and the higher driving force for oxygen 

evolution reaction. Both are strongly related to the microstructural properties of the catalyst 

(plasma electrode) such as porosity, particle size, tortuosity etc. (Figure S1). This assumption is 

consistent with the observed faradaic efficiency (i.e. the conversion of oxygen to nitric oxide) 

which starts from 93% and gradually decreases with increasing current (Figure 4b). The 

corresponding conversion of nitrogen to nitric oxide is 0.045% at 20 mA. 

Although the available experimental data for our hybrid plasma activated SOEC system do not yet 

allow for a detailed description of the key species and the involved reaction mechanisms, a 

straightforward qualitative hypothesis is presented in what follows. In the afterglow of RF nitrogen 

plasmas (e.g. [17]) a relative concentration of 0.1% atomic nitrogen, N, is found. Highly 

vibrationally excited nitrogen molecules N2 (v>13) and long-living metastable molecules, N2(A), 

are a factor 10 and 10-4 less abundant than N. Assuming the same relative concentration of N would 

lead under the present experimental conditions to a flux of atomic nitrogen species impinging onto 

surface of the electrochemical cell of about (~ 1.5x1016 s-1), thereby considering an ideally flat 

electrode surface. The flux of oxygen ions through the membrane is of the same order of magnitude 
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(< 6x1016 s-1 equivalent to twice the value of 50 nmol/s as reported for 20 mA in Figure 3). At this 

current level further NO formation would be hampered by the availability of atomic nitrogen and 

the NO formation rate levels off. This qualitative picture still entirely neglects the flux of 

vibrationally excited nitrogen molecules from the afterglow, recombination of atomic nitrogen 

species on the surface and kinetic effects which will be subject to further research efforts. 

Nevertheless, especially under the low pressure conditions in the plasma compartment it is safe to 

assume that the oxidation of plasma-activated nitrogen species impinging on the TPB is the key 

mechanism of NO formation. In the absence of plasma NO formation has not been observed 

(Figure 3) which highlights the need of the plasma-activation step.  

By modestly changing the plasma power the impinging flux of activated nitrogen is modified 

which should affect the NO formation rate. In Figure S2 the effect of plasma power on the NO 

production is shown. At the three examined conditions a similar behavior is observed i.e. NO 

production increases in the low current range followed by a plateau at higher current values. Upon 

increasing plasma power more activated nitrogen species are generated and become available at 

the TPBs and thus leading to higher NO formation rates at the same current levels. The observed 

behavior of NO formation rates as function of applied plasma power are consistent with our 

aforementioned hypothesis about the main reaction mechanisms. Therefore, a detail study of effect 

of TBP, electrode thickness as well as plasma characteristics will be required to further elucidate 

this point and it will be the topic of a future work.  

Interestingly, the amount of NO produced is more than 3 orders of magnitude higher than the 

equilibrium concentration of the NO in a N2, O2, NO mixture at this temperature and concentration 

(Figure S3, top). Similar levels of NO concentration at equilibrium can be only achieved at 

operating temperature in the range of 1600-1800 oC (Figure S3, bottom).  
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An important and unique feature of our concept is that apart from nitrogen fixation at the anode, 

hydrogen is also produced at the cathode as a result of water reduction. The hydrogen production 

as a function of applied current is shown in Figure 4c. Moreover, due to our reactor configuration 

plasma active area is far from the catalyst so the SOEC polarization curve (Figure 4d) as well as 

the electrochemical impedance spectra (Figure S4) are not affected.  

This contribution serves as a proof of principle demonstrating that plasma activated gas can be 

implemented in electrochemical systems. The energy consumption in our system is 1350 MJ/N-

mol which is within the range of reported values (47 to 2698 MJ/N-mol) for N2 fixation by H2O 

[19-22]. It should be emphasized that there is plenty room of improvement by utilizing advanced 

SOEC catalyst architectures [33] and adjusting operational parameters.   

We have demonstrated that surface generated oxygen by means of a solid oxide electrolyte 

membrane is reacted with activated nitrogen gas for the first time, paving the way for an innovative 

all electric nitrogen fixation pathway. It is worthwhile to note the counter product of the 

electrolysis reaction i.e. hydrogen is also a commercially viable compound in addition to being a 

topic of research for the hydrogen economy.  

 

EXPERIMENTAL 

The setup, consists of mainly an RF generator (13.56 MHz, 300 W maximum power rating 

Huttinger PFG 300 RF) with a coil enclosing a quartz tube of 40 mm outer diameter and 700 mm 

length, called plasma reactor and a SOEC inside the quartz tube, as shown in Figure 1. To couple 

an atmospheric pressure process (water splitting) with a vacuum process (N2 activation by RF 

plasma), we chose to use a tubular ceramic (YSZ) electrolyte. This tubular electrolyte was required 
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for supporting mechanically its own weight, thus we implemented a commercially available YSZ 

tube with thick walls (Ortech, 2 mm thickness, 25 mm diameter and 245 mm length). Inner 

compartment of the SOEC is at 1 bar whereas the plasma compartment is at 5 mbar. Pt electrodes 

were deposited by brush painting (organometallic paste, Fuel Cell Materials) on both sides of the 

closed end of YSZ tube and consequently annealed at 900 °C (2h) in air. The electrode surface 

area is around 20 cm2
, while the loading is 5 mg of Pt per cm2. The current densities we obtained 

are typical for SOEC with similar electrolyte/electrode combinations operating in similar 

conditions [34,35] .  

The surface morphology of the Pt/YSZ interface was characterized using a scanning electron 

microscope (FEI Quanta 3D FEG instrument) at an acceleration voltage of 3-5 keV and a working 

distance of 10 mm. The electrochemical characterization was carried out using a CompactStat 

(Ivium) potentiostat.  

Humidified He (50 ml/min) was used in the cathodic compartment at atmospheric pressure while  

at fixed nitrogen flow (100 ml/min) was fed in plasma compartment at 5 mbar pressure. The 

experiments were performed at 650 °C for three different values of applied input power (40, 60 

and 80 W) while maintaining 0 W reflected power through a tunable matching network.  

The gases from the electrochemical cell and plasma reactor were analyzed using a Hiden 

Analytical Quadrupole Mass Spectrometer HAL 201RC. The calibrations to quantify the NO and 

H2 production and O2 consumption were carried out by using 100 ppm NO in He, 1% H2 in He 

and 1% O2 in He cylinders, respectively. In each case, the standard gas mixture was used without 

dilution and with He dilution in the levels of 25% and 50% keeping the flow rate constant, e.g. for 

NO, 100 ppm, 75 ppm and 50 ppm NO in He was used for the calibration. In all the cases, a linear 
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relation between the signal level and amount of the gas in study, has been observed. NO and H2 

co-generation experiments were repeated three times. 

Thermodynamic calculations for the equilibrium concentration of NO in a N2, O2, NO gas mixture 

were performed using HSC Chemistry (Outotec Technologies). 
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