9 research outputs found

    Study of brake wear particle emissions of a minivan on a chassis dynamometer

    Get PDF
    Car brakes appear to be a significant atmospheric pollutant source, with a contribution to total non-exhaust traffic-related PM10 emissions being estimated at approximately 55% in big cities and urban environments (Bukowiecki et al., 2009). Brake wear particle emissions of a minivan running on a chassis dynamometer were measured using a custom sampling system, positioned close to the braking system, under different initial speeds (30 km/h and 50 km/h), deceleration rates (0.5 m/s2, 1.5 m/s2, 2.5 m/s2), and ambient temperatures (0 °C, 15 °C and 25 °C). Braking from 50 km/h to full stop, results in 40–100% more particles compared to 30 km/h, depending on the deceleration rate. It was also found that only 9–50% of the total particles emitted, are released during the braking phase and therefore the most significant amount is released on the following acceleration phase. High brake pad temperature results in a bimodal distribution with the first peak being at 1 μm and the second falling at the nanometer scale at 200 nm. The ambient temperature appears to have a negligible effect on the particle generation. Document type: Articl

    On Line Characterization of SiC Nanoparticles Produced by Laser Pyrolysis

    No full text
    International audienceOn Line Measurements campaigns have been carried out for the first time in IRAMIS/SPAM CEA's laser gas-phase pyrolysis nanoparticles production facilities. The produced aerosol is composed of Argon and/or Helium laden with SiC nanoparticles concentrated up to ~14 mg/l. Different commercial apparatus were used for sampling, and characterisation of size, and morphology of the particles. A series of experiment is performed by IRSN with a DMS500 from Cambustion Ltd™, which gives electrical mobility equivalent diameter distribution in real time. Particles are sampled with an ejector-diluter VKL-10 from Palas™. On the same sampling line, APTL performed aerodynamic equivalent diameter mass distribution using a Nanomoudi from MSP Corp.™ and TEM post analysis, as well as post elemental analysis (EDS) after collection on TEM grid with a Thermophoretic Precipitator (TP). A previously developed model is used to obtain the aggregate morphology and primary particles sizes. In addition to these commercial or well-known techniques, a new patent-pending technique called RFPM (Radio Frequency Plasma Metrology developed by CILAS + GREMI in the frame of NANOCARA program) is tested for the first time off the lab. The principle is based on levitation of particles in plasma RF. The entire set up is a prototype, including the sampling line. Experiments showed that this technique is very promising for on line gas phase monitoring, even though future improvements are needed, especially on the direct injection of the sample in the measuring chamber. First results of size distribution on pyrolysis line were obtained: three modes of different geometric mean diameter D50 were measured. Further analysis of TEM micrographs gave insight on these three modes, they can be interpreted as primary particles, aggregated particles, and a third one which could be composed of silica oxide nanoparticles issued from the combustion of the remaining silane initiated by an air leak in the exhaust of the reactor. Furthermore, a parametric study was undertaken. Helium addition in reactor and laser power were authorized to vary within a significant range. There was an evidence of influence of these parameters on the size distributions. Thus, we have demonstrated the high interest of implementing a size monitoring set up on gas phase nanoparticles production line for safety, yield improvement, and cost reduction purposes. This set up can run in a safe and non invasive way, and require low maintenance

    Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities: Comparison and harmonization of different approaches

    No full text
    Shipping is a growing transport sector representing a relevant share of atmospheric pollutant emissions at global scale. In the Mediterranean Sea, shipping affects air quality of coastal urban areas with potential hazardous effects on both human health and climate. The high number of different approaches for investigating this aspect limits the comparability of results. Furthermore, limited information regarding the inter-annual trends of shipping impacts is available. In this work, an approach integrating emission inventory, numerical modelling (WRF-CAMx modelling system), and experimental measurements at high and low temporal resolution is used to investigate air quality shipping impact in the Adriatic/Ionian area focusing on four port-cities: Brindisi and Venice (Italy), Patras (Greece), and Rijeka (Croatia). Results showed shipping emissions of particulate matter (PM) and NOx comparable to road traffic emissions at all port-cities, with larger contributions to local SO2 emissions. Contributions to PM2.5 ranged between 0.5% (Rijeka) and 7.4% (Brindisi), those to PM10 were between 0.3% (Rijeka) and 5.8% (Brindisi). Contributions to particle number concentration (PNC) showed an impact 2-4 times larger with respect to that on mass concentrations. Shipping impact on gaseous pollutants are larger than those to PM. The contribution to total polycyclic aromatic hydrocarbon (PAHs) concentrations was 82% in Venice and 56% in Brindisi, with a different partition gas-particle because of different meteorological conditions. The inter-annual trends analysis showed the primary contribution to PM concentrations decreasing, due to the implementation of the European legislation on the use of low-sulphur content fuels. This effect was not present on other pollutants like PAHs. (C) 2016 Elsevier Ltd. All rights reserved
    corecore