356 research outputs found
I/O-Efficient Dynamic Planar Range Skyline Queries
We present the first fully dynamic worst case I/O-efficient data structures
that support planar orthogonal \textit{3-sided range skyline reporting queries}
in \bigO (\log_{2B^\epsilon} n + \frac{t}{B^{1-\epsilon}}) I/Os and updates
in \bigO (\log_{2B^\epsilon} n) I/Os, using \bigO
(\frac{n}{B^{1-\epsilon}}) blocks of space, for input planar points,
reported points, and parameter . We obtain the result
by extending Sundar's priority queues with attrition to support the operations
\textsc{DeleteMin} and \textsc{CatenateAndAttrite} in \bigO (1) worst case
I/Os, and in \bigO(1/B) amortized I/Os given that a constant number of blocks
is already loaded in main memory. Finally, we show that any pointer-based
static data structure that supports \textit{dominated maxima reporting
queries}, namely the difficult special case of 4-sided skyline queries, in
\bigO(\log^{\bigO(1)}n +t) worst case time must occupy space, by adapting a similar lower bounding argument for
planar 4-sided range reporting queries.Comment: Submitted to SODA 201
Nowcasting user behaviour with social media and smart devices on a longitudinal basis: from macro- to micro-level modelling
The adoption of social media and smart devices by millions of users worldwide over the last decade has resulted in an unprecedented opportunity for NLP and social sciences. Users publish their thoughts and opinions on everyday issues through social media platforms, while they record their digital traces through their smart devices. Mining these rich resources offers new opportunities in sensing real-world events and indices (e.g., political preference, mental health indices) in a longitudinal fashion, either at the macro (population)-, or at the micro(user)-level.
The current project aims at developing approaches to “nowcast" (predict the current state of) such indices at both levels of granularity. First, we build natural language resources for the static tasks of sentiment analysis, emotion disclosure and sarcasm detection over user-generated content. These are important for opinion monitoring on a large scale. Second, we propose a general approach that leverages textual data derived from generic social media streams to nowcast political indices at the macro-level. Third, we leverage temporally sensitive and asynchronous information to nowcast the political stance of social media users, at the micro-level using multiple kernel learning. We then focus further on the micro-level modelling, to account for heterogeneous data sources, such as information derived from users' smart phones, SMS and social media messages, to nowcast time-varying mental health indices of a small cohort of users on a longitudinal basis. Finally, we present the challenges faced when applying such micro-level approaches in a real-world setting and propose directions for future research
Dynamic Planar Orthogonal Point Location in Sublogarithmic Time
We study a longstanding problem in computational geometry: dynamic 2-d orthogonal point location, i.e., vertical ray shooting among n horizontal line segments. We present a data structure achieving O(log n / log log n) optimal expected query time and O(log^{1/2+epsilon} n) update time (amortized) in the word-RAM model for any constant epsilon>0, under the assumption that the x-coordinates are integers bounded polynomially in n. This substantially improves previous results of Giyora and Kaplan [SODA 2007] and Blelloch [SODA 2008] with O(log n) query and update time, and of Nekrich (2010) with O(log n / log log n) query time and O(log^{1+epsilon} n) update time. Our result matches the best known upper bound for simpler problems such as dynamic 2-d dominance range searching.
We also obtain similar bounds for orthogonal line segment intersection reporting queries, vertical ray stabbing, and vertical stabbing-max, improving previous bounds, respectively, of Blelloch [SODA 2008] and Mortensen [SODA 2003], of Tao (2014), and of Agarwal, Arge, and Yi [SODA 2005] and Nekrich [ISAAC 2011]
I/O-Efficient Planar Range Skyline and Attrition Priority Queues
In the planar range skyline reporting problem, we store a set P of n 2D
points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1,
b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The
query is 3-sided if an edge of Q is grounded, giving rise to two variants:
top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries.
All our results are in external memory under the O(n/B) space budget, for
both the static and dynamic settings:
* For static P, we give structures that answer top-open queries in O(log_B n
+ k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U
x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number
of reported points). The query complexity is optimal in all cases.
* We show that the left-open case is harder, such that any linear-size
structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this
case is as difficult as the general 4-sided queries, for which we give a static
structure with the optimal query cost O((n/B)^e + k/B).
* We give a dynamic structure that supports top-open queries in O(log_2B^e
(n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e
satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries
with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log
(n/B)).
As a contribution of independent interest, we propose an I/O-efficient
version of the fundamental structure priority queue with attrition (PQA). Our
PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case
I/Os, and O(1/B) amortized I/Os per operation.
We also add the new CatenateAndAttrite operation that catenates two PQAs in
O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial
extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin
note: text overlap with arXiv:1208.4511, arXiv:1207.234
Data structures
We discuss data structures and their methods of analysis. In particular, we treat the unweighted and weighted dictionary problem, self-organizing data structures, persistent data structures, the union-find-split problem, priority queues, the nearest common ancestor problem, the selection and merging problem, and dynamization techniques. The methods of analysis are worst, average and amortized case
- …