1,081 research outputs found

    Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90634/1/AIAA-55313-740.pd

    Charmless Three-Body Baryonic B Decays

    Full text link
    Motivated by recent data on B-> p pbar K decay, we study various charmless three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of order 10^{-6}. There are two mechanisms for the baryon pair production, current-produced and transition. The behavior of decay spectra from these baryon production mechanisms can be understood by using QCD counting rules. Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.

    Essential role of PKC delta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells

    Get PDF
    Histone deactylase inhibitors (HDACi) are common chemotherapeutic agents that stimulate Epstein-Barr virus (EBV) reactivation; the detailed mechanism remains obscure. In this study, it is demonstrated that PKC delta is required for induction of the EBV lytic cycle by HDACi. Inhibition of PKC delta abrogates HDACi-mediated transcriptional activation of the Zta promoter and downstream lytic gene expression. Nuclear translocation of PKC delta is observed following HDACi stimulation and its overexpression leads to progression of the EBV lytic cycle. Our study suggests that PKC delta is a crucial mediator of EBV reactivation and provides a novel insight to study the regulation of the EBV lytic cycle

    Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on R^2

    Get PDF
    We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schroedinger flow as special cases) for degree m equivariant maps from R^2 to S^2. If m \geq 3, we prove that near-minimal energy solutions converge to a harmonic map as t goes to infinity (asymptotic stability), extending previous work down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m=3, involving (among other tools) a "normal form" for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schroedinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m=2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even "eternal oscillation".Comment: 34 page

    Spin dynamics simulations of the magnetic dynamics of RbMnF3_3 and direct comparison with experiment

    Full text link
    Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the classical Heisenberg antiferromagnet in simple cubic lattices with linear sizes L60L\leq 60. This system is widely recognized as an appropriate model for the magnetic properties of RbMnF3_3. Time-evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a new algorithm implemented by Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correlation function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical exponent was estimated to be z=(1.43±0.03)z=(1.43\pm 0.03), which is slightly lower than the dynamic scaling prediction, but in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion curve and the lineshapes obtained from our simulations with very recent experimental results for RbMnF3_3 are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR

    A CSF-1R-blocking antibody/IL-10 fusion protein increases anti-tumor immunity by effectuating tumor-resident CD8<sup>+</sup> T cells.

    Get PDF
    Strategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer. Moreover, this bifunctional protein not only leads to the anticipated reduction in tumor-associated macrophages but also triggers proliferation, activation, and metabolic reprogramming of CD8 &lt;sup&gt;+&lt;/sup&gt; T cells. Furthermore, it extends the clonotype diversity of tumor-infiltrated T cells and shifts the tumor microenvironment (TME) to an immune-active state. This study suggests an efficient strategy for designing immunotherapeutic agents by fusing a potent immunostimulatory molecule to an antibody targeting TME-enriched factors

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
    corecore