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ASYMPTOTIC STABILITY, CONCENTRATION, AND
OSCILLATION IN HARMONIC MAP HEAT-FLOW,

LANDAU-LIFSHITZ, AND SCHRÖDINGER MAPS ON R2

STEPHEN GUSTAFSON, KENJI NAKANISHI, AND TAI-PENG TSAI

Abstract. We consider the Landau-Lifshitz equations of ferromagnetism (in-
cluding the harmonic map heat-flow and Schrödinger flow as special cases) for
degree m equivariant maps from R2 to S2. If m ≥ 3, we prove that near-minimal
energy solutions converge to a harmonic map as t → ∞ (asymptotic stability),
extending previous work [12] down to degree m = 3. Due to slow spatial decay
of the harmonic map components, a new approach is needed for m = 3, involving
(among other tools) a “normal form” for the parameter dynamics, and the 2D
radial double-endpoint Strichartz estimate for Schrödinger operators with suffi-
ciently repulsive potentials (which may be of some independent interest). When
m = 2 this asymptotic stability may fail: in the case of heat-flow with a fur-
ther symmetry restriction, we show that more exotic asymptotics are possible,
including infinite-time concentration (blow-up), and even “eternal oscillation”.
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1. Introduction and results

The Landau-Lifshitz (sometimes Landau-Lifshitz-Gilbert) equation describing the
dynamics of an 2D isotropic ferromagnet is (eg. [13])

u⃗t = a1(∆u⃗ + |∇u⃗|2u⃗) + a2u⃗ × ∆u⃗, a1 ≥ 0, a2 ∈ R (1.1)

where the magnetization vector u⃗ = u⃗(t, x) = (u1, u2, u2) is a 3-vector with normal-
ized length, so can be considered a map into the 2-sphere S2:

u⃗ : [0, T ) × R2 → S2 := {u⃗ ∈ R3 | |u⃗| = 1}. (1.2)

The special case a2 = 0 of (1.1) is the very well-studied harmonic map heat-flow into
S2, while the special case a1 = 0 is known as the Schrödinger flow (or Schrödinger
map) equation, the geometric generalization of the linear Schrödinger equation for
maps into the Kähler manifold S2.

In order to exhibit the simple geometry of (1.1) more clearly, we introduce, for
u⃗ ∈ S2, the tangent space

Tu⃗S2 := u⃗⊥ = {ξ⃗ ∈ R3 | u⃗ · ξ⃗ = 0} (1.3)

to the sphere S2 at u⃗. For any vector v⃗ ∈ R3, we define two operations on vectors:

J v⃗ := v⃗×, P v⃗ := −J v⃗J v⃗. (1.4)

For u⃗ ∈ S2, P u⃗ projects vectors orthogonally onto Tu⃗S2, while J u⃗ is a π/2 rotation
(complex structure) on Tu⃗S2. Denoting

a = a1 + ia2 ∈ C, (1.5)

the Landau-Lifshitz equation (1.1) may be written

u⃗t = P u⃗
a ∆u⃗, P u⃗

a := a1P
u⃗ + a2J

u⃗ (1.6)

The energy associated to (1.1) is simply the Dirichlet functional

E(u⃗) =
1

2

∫
R2

|∇u⃗|2dx (1.7)

and (1.6) formally yields the energy identity

E(u⃗(t)) + 2a1

∫ t

0

∫
R2

|P u⃗∆u⃗(s, x)|2dxds = E(u⃗(0)) (1.8)

implying, in particular, energy non-increase if a1 > 0, and energy conservation if
a1 = 0 (Schrödinger map).

To a finite-energy map u⃗ : R2 → S2 is associated the degree

deg(u⃗) :=
1

4π

∫
R2

u⃗x1 · J u⃗u⃗x2dx. (1.9)

If lim|x|→∞ u⃗(x) exists (which will be the case below), we may identify u⃗ with a
map S2 → S2, and if the map is smooth, deg(u⃗) is the usual Brouwer degree (in
particular, an integer). It follows immediately from expression (1.9) that the energy
is bounded from below by the degree:

E(u⃗) =
1

2

∫
R2

|u⃗x1 − J u⃗u⃗x2|2 + 4π deg(u⃗) ≥ 4π deg(u⃗), (1.10)
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and equality here is achieved exactly at harmonic maps solving the first-order equa-
tions

u⃗x1 = J u⃗u⃗x2 (1.11)

which, in stereographic coordinates

S2 ∋ u⃗ ←→ u1 + iu2

1 − u3

∈ C ∪ {∞} (1.12)

are the Cauchy-Riemann equations, and the solutions are rational functions. These
harmonic maps are critical points of the energy E and, in particular, static solutions
of the Landau-Lifshitz equation (1.1).

In this paper we specialize to the class of m-equivariant maps, for some m ∈ Z+:

u⃗(t, x) = emθRv⃗(t, r), v⃗ : [0, T ) × [0,∞) → S2 (1.13)

with notations

R := J k⃗ = k⃗×, k⃗ = (0, 0, 1), (1.14)

and polar coordinates

x1 + ix2 = reiθ. (1.15)

In terms of the radial profile map v⃗ = (v1, v2, v3), the energy is

E(u⃗) = π

∫ ∞

0

(
|v⃗r|2 +

m2

r2
(v2

1 + v2
2)

)
rdr. (1.16)

Finite energy implies v⃗ is continuous in r and limr→0 v⃗ = ±k⃗, limr→∞ v⃗ = ±k⃗
(see [11] for details). We force non-trivial topology by working in the class of maps

Σm := {u⃗ = emθRv⃗(r) | E(u⃗) < ∞, v⃗(0) = −k⃗, v⃗(∞) = k⃗}. (1.17)

It is easy to check that the degree of such maps is m:

deg ¹ΣM
≡ m. (1.18)

The harmonic maps saturating inequality (1.10) which also lie in Σm are those
corresponding to βzm (β ∈ C× = C\{0}) in stereographic coordinates (1.12). In the
representation S2 ⊂ R3, the harmonic map corresponding to zm is given by

emθRh⃗(r), h⃗ = (h1, 0, h3), h1 =
2

rm + r−m
, h3 =

rm − r−m

rm + r−m
. (1.19)

The full two-dimensional family of m-equivariant harmonic maps in Σm is then
generated by rotation and scaling, so for s > 0 and α ∈ R, we denote

µ = m log s + iα, h⃗[µ] = eαRh⃗s, h⃗s = h⃗(r/s). (1.20)

The harmonic map emθRh[µ] corresponds under stereographic projection to e−µzm.
We are concerned here with basic global properties of solutions of the Landau-

Lifshitz equations (1.1), especially the possible formation of singularities, and the
long-time asymptotics.

For finite-energy solutions of (1.1) in 2 space dimensions, finite-time singularity
formation is only known to occur in the case of the 1-equivariant harmonic map
heat-flow (a2 = 0) – the first such result [5] was for the problem on a disk with
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Dirichlet boundary conditions (this was extended to Σ1 on R2 in [10]). Examples of
finite-time blow-up for different target manifolds (not the physical case S2) are also
known (eg. [22]).

For the Schrödinger case (a1 = 0), it is known that small-energy solutions remain
regular (this was proved first in [6] for equivariant maps, and then in [2] without
symmetry restriction). In the present setting, the energy is not small – indeed
by (1.10) and (1.18),

E ¹Σm ≥ 4πm. (1.21)

A self-similar blow-up solution, which however carries infinite energy, is constructed
in [7].

In the recent works [12, 10, 9], it was shown that when m ≥ 4, solutions of (1.1)
in Σm with near minimal energy (E(u⃗) ≈ 4πm) are globally regular, and converge

asymptotically to a member emθRh⃗[µ] of the harmonic map family. In particular,
the harmonic maps are asymptotically stable. The analysis there fails to extend to

m ≤ 3, due to the slower spatial decay of d
dµ

h⃗[µ] (a point which we hope to clarify

below). With a new approach, we can now handle the case m = 3 as well:

Theorem 1.1. Let m ≥ 3, a = a1 + ia2 ∈ C\{0}, and a1 ≥ 0. Then there
exists δ > 0 such that for any u⃗(0, x) ∈ Σm with E(u⃗(0)) ≤ 4mπ + δ2, we have a
unique global solution u⃗ ∈ C([0,∞); Σm) of (1.1), satisfying ∇u⃗ ∈ L2

t,loc([0,∞); L∞
x ).

Moreover, for some µ ∈ C we have

∥u⃗(t) − emθRh⃗[µ]∥L∞
x

+ a1E(u⃗(t) − emθRh⃗[µ]) → 0 as t → ∞. (1.22)

In short, every solution with energy close to the minimum converges to one of
the harmonic maps uniformly in x as t → ∞. Even for the higher degrees m ≥ 4,
this result is stronger than the previous ones [12, 10, 9], where the convergence was
given only in time average.1 Note that in the dissipative case (a1 > 0), solutions
converge to a harmonic map also in the energy norm, while this is impossible for
the conservative Schrödinger flow (a1 = 0).

The analysis for the case m = 2 seems trickier still, and we have results only in
special case of the harmonic map heat-flow (a2 = 0) with the further restriction that
the image of the radial profile map v⃗(r) remain on a great circle: v2 ≡ 0 (though
of course the map u⃗(x) itself covers the full sphere m times) – this is a condition
which is preserved by the evolution only for the heat-flow. These results show, in
particular, that the strong asymptotic stability result of Theorem 1.1 for m ≥ 3 is no
longer valid; instead, more exotic asymptotics are possible, including infinite-time
concentration (blow-up) and “eternal oscillation”:

Theorem 1.2. Let m = 2 and a > 0. Then there exists δ > 0 such that for any
u⃗(0, x) = e2θRv⃗(0, r) ∈ Σ2 with E(u⃗(0)) ≤ 8π+δ2, and v2(0, r) ≡ 0, we have a unique
global solution u⃗ ∈ C([0,∞); Σ2) satisfying ∇u⃗ ∈ L2

t,loc([0,∞); L∞
x ). Moreover, for

some continuously differentiable s : [0,∞) → (0,∞) we have

∥u⃗(t) − emθRh⃗(r/s(t))∥L∞
x

+ E(u⃗(t) − emθRh⃗(r/s(t))) → 0 as t → ∞. (1.23)

1The statements in the previous papers do not follow directly from Theorem 1.1, but are implied
by the proof in this paper.



STABILITY AND OSCILLATION OF HARMONIC MAPS 5

In addition, we have the following asymptotic formula for s(t):

(1 + o(1)) log(s(t)) =
2

π

∫ √
at

1

v1(0, r)

r
dr + Oc(1), (1.24)

where as t → ∞, o(1) → 0 and Oc(1) converges to some finite value. In particular
there are initial data yielding each of the following types of asymptotic behavior:

(1) s(t) → ∃ s∞ ∈ (0,∞).
(2) s(t) → 0.
(3) s(t) → ∞.
(4) 0 = lim inf s(t) < lim sup s(t) < ∞.
(5) 0 < lim inf s(t) < lim sup s(t) = ∞.
(6) 0 = lim inf s(t) < lim sup s(t) = ∞.

Estimate (1.23) shows that these solutions do converge asymptotically to the
family of harmonic maps. However, the evolution along this family, described by
the parameter s(t), does not necessarily approach a particular map in Σ2 (although
it might – case (1)). The solution may in fact converge pointwise (but not uniformly)

to a constant map ±k⃗ (which has zero energy, zero degree, and lies outside Σ2) as
in (2)-(3) (this is infinite-time blow-up or concentration), or it may asymptotically
“oscillate” along the harmonic map family, as in (4)-(6).

Note that the above classification (1)-(6) is stable against initial “local” pertur-
bation. Namely, if two initial data v1(0) and v2(0) satisfy∫ ∞

1

|v1
1(0, r) − v2

1(0, r)|
r

dr < ∞, (1.25)

the corresponding solutions have the same asymptotic type among (1)-(6). More
precisely, the difference of their scaling parameters converges in (0,∞). The point
is that the energy just barely fails to control the above integral.

In particular, the oscillatory behavior in (4)-(6) is driven solely by the distribution
around spatial infinity. In fact, if we replace the domain R2 by the disk D = {x ∈
R2 | |x| < 1} with the same symmetry restriction with m = 2 and the same boundary

conditions v(t, 0) = −k⃗ and v(t, 1) = k⃗, then it is known [1] (see also [8]) that all
the solutions behave like (2), namely they concentrate at x = 0 as t → ∞, provided
that v3(0, r) has only one zero. The formula (1.24) suggests that we should always
have (2) on D without the additional condition. Also, if we replace the domain R2

by S2, then we can rather easily show in the dissipative case a1 > 0 that the solution
converges to one harmonic map for all m ∈ N, by the argument in this paper, or
even those in the previous papers. We state the result on S2 in Appendix A with a
sketch of the proof.

We should mention that existence of eternal oscillation of the same type was first
shown in [18] for the semilinear heat equation of u(t, x) : [0,∞) × RN → R

ut − ∆u = |u|pu, (1.26)

for very high dimensions and power2 (N ≥ 11 and p > 4/(N − 4 − 2
√

N − 1)), by
using the comparison principle, but they did not obtain an asymptotic formula valid

2The power is bigger at least than the H5 scaling critical exponent.
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for all solutions, nor the asymptotic stability of the family of stationary solutions in
a solution class containing the eternal oscillations.

There is another example in [21, Section 5] with less similarity to ours, but for
the harmonic map heat flow, which shows existence of “eternal winding” around a
compact 1-parameter family of harmonic maps from S2 to S2×R2 with some warped
metric, where the analysis is reduced to an ODE on the target by the special choice
of initial data. In this case, the weird behavior of the solutions is entirely due to the
artificial choice of the metric on the target.

Compared with those results, we have the following advantages:

(1) The setting is very simple and physically natural.
(2) The asymptotic formula is explicit in terms of the initial data, and valid for

all general solutions under the symmetry condition.

We want to emphasize also that our analysis works in the same way in the dissipative
(a1 > 0) and the dispersive (a1 = 0) cases. We need a2 = 0 in Theorem 1.2 only
because the angular parameter α(t) gets beyond our control (hence we remove it by
the constraint), but the rest of our arguments could work in the general case.3

1.1. The main difficulty and the main idea. The standard approach for asymp-
totic stability is to decompose the solution into a leading part with finite dimensional
parameters varying in time, and the rest decaying in time either by dissipation or
by dispersion. In our context, we want to decompose the solution in the form

v⃗(t) = h⃗[µ(t)] + v̌(t) (1.27)

such that the remainder v̌(t) decays, and the parameter µ(t) ∈ C converges as t → ∞
(at least for Theorem 1.1). In favorable cases (the higher m, in our context), we can
choose µ(t) such that all secular modes for v̌(t) are absorbed into the time evolution

of the main part h⃗[µ(t)]. This means that the kernel of the linearized operator for

v̌(t) is spanned by the parameter derivatives of h⃗[µ], and hence we can put that

component of ∂tv⃗(t) into ∂th⃗[µ(t)]. This is good both for v̌(t) and µ(t), because

(1) v̌(t) will be free from secular modes, and so we can expect it to decay by
dissipation or dispersion, at least at the linearized level.

(2) The decomposition is preserved by the linearized equation. Hence µ̇(t) is
affected by v̌ only superlinearly, i.e. at most in quadratic terms.

In particular, if we can get L2 decay of v̌ in time, then µ̇(t) becomes integrable in
time, and so converges as t → ∞. This is indeed the case for m > 3.

However, the above naive argument does not take into account the space-time be-
havior of each component. The problem comes from the fact that the decomposition
and the decay estimate must be implemented in different function spaces, and they
may be incompatible if the eigenfunctions decay too slowly at the spatial infinity.

In fact, the parameter derivative of h⃗[µ] is given by

dh⃗[µ] = hs
1e

αR[(hs
3, 0,−hs

1)dµ1 + (0, 1, 0)dµ2] (1.28)

3We will use the parameter convergence in the proof of Theorem 1.1 in the dispersive case a1 = 0
to fix our linearized operator. However it is possible to treat the linearized operator even with
non-convergent parameter and a1 = 0, if we assume one more regularity on the initial data. We
do not pursue it here since the wild behavior of α(t) prevents us from using it.
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and hence the eigenfunctions are O(r−m) for r → ∞, i.e. slower for lower m. On
the other hand, the spatial decay property in the function space for the time decay
estimate is essentially determined by the invariance of our problem under the scaling

v⃗(t, x) 7→ v⃗(λ2t, λx), (1.29)

which maps solutions into solutions, preserving the energy. If we want L2 decay in
time (so that we can integrate quadratic terms in µ̇), then a function space with the
right scaling is given by

v̌/r ∈ L2
t L

∞
x . (1.30)

To preserve such norms in x under the orthogonal projection, the eigenfunction
must be in the dual space, for which m > 3 is necessary. Indeed, this is the essential
reason for the restriction m ≥ 4 in the previous works [11, 12, 10]. We emphasize
that the above difficulty is common for the dissipative and dispersive cases, since
they share the same scaling property. That is, the dissipation does not help with
this issue, even though it gives us more flexibility in the form of decay estimates.

The main novelty of the present approach is the non-orthogonal decomposition

L2
x = (hs

1) ⊕ (φs)⊥, (1.31)

where φs(r) is smooth and supported away from r = 0 and from r = ∞, so that
the (non-orthogonal) projection may preserve the decay estimates. This is good
for the remainder v̌, but not for the parameter µ —the decomposition is no longer
preserved by the linearized evolution, since they have no particular relation. This
implies that we get a new error term in µ̇(t) which is linear in v̌(t) (see Section 6).
This contribution is handled by including it in a sort of “normal form” for the
dynamics of the parameters µ(t), explained in Section 7. In particular, it is this
new term which drives the non-trivial dynamics for the m = 2 heat-flow given in
Theorem 1.2.

For the purely dispersive (Schrödinger map) case, one tool we use should be of
some independent interest: the 2D radial “double-endpoint Strichartz estimate” for
Schrödinger operators with sufficiently “repulsive” potentials (in the absence of a
potential, the estimate is false). The proof is given in Section 10.2.

1.2. Organization of the paper. In Section 2, we use the “generalized Hasimoto
transform” to derive the main equation used to obtain time-decay estimates of the
remainder term. Section 3 gives the details of the solution decomposition described
above, and addresses the inversion of the Hasimoto transform. The estimates for
going back and forth between the different coordinate systems (the “Hasimoto” one
of Section 2 and the decomposition of Section 3) are given in Section 4. Section 5
is devoted to establishing the time-decay (dispersive if a1 = 0, diffusive if a1 > 0)
of the remainder term, using energy-, Strichartz-, and scattering-type estimates.
The dynamics of the parameters µ(t) are derived and estimated in Section 6. The
leading term in the equation for µ̇ is not integrable in time, and so Section 7 gives
an integration by parts in time to identify (and estimate) a kind of “normal form”
correction to µ(t), whose time derivative is integrable. At this stage, the proof of
Theorem 1.1 for m > 3 is complete. A more subtle estimate of an error term for
m = 3 is done in Section 8, completing the proof in that case. Finally, in Section 9,
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the normal form correction is analyzed in the case m = 2, a2 = 0, v2 = 0, in order to
prove Theorem 1.2. Proofs of certain linear estimates (including the double-endpoint
Strichartz) are relegated to Section 10. Appendix A states the analogous theorems
for domain S2 and sketches the proofs.

At the end of each of the main sections, we will put a proposition summarizing
the main contents of that section.

1.3. Some further notation. We distinguish inner products in R3 and C by

a⃗ · b⃗ =
3∑

k=1

akbk, a ◦ b = Re a Re b + Im a Im b. (1.32)

Both will be used for C3 vectors too. The L2
x inner-product is denoted

(f | g) =

∫
R2

f(x)g(x)dx, (1.33)

while (f, g) just denotes a pair of functions. For any radial function f(r) and any
parameter s > 0, we denote rescaled functions by

f s(r) := f(r/s), f ̸s(r) := f(r/s)s−2. (1.34)

We denote the Fourier transform on R2 by F , and, for radial functions, the Fourier-
Bessel transform of order m by Fm:

(Ff)(ξ) =
1

2π

∫
R2

f(x)e−ix·ξdx, (Fm)f(ρ) =

∫ ∞

0

Jm(rρ)f(r)rdr, (1.35)

where Jm is the Bessel function of order m. For m ∈ Z we have

Jm(r) =
1

2π

∫ π

−π

eimθ−ir sin θdθ, F [f(r)eimθ] = im(Fmf)eimθ. (1.36)

We denote the Laplacian ∆x on the subspace spanned by d-dimensional spherical
harmonics of order m by

∆
(m)
d := ∂2

r + (d − 1)r−1∂r − m(m + d − 2)r−2. (1.37)

Finally, the space Lp
q is the dyadic version of Lp(rdr) defined by the norm

∥f∥Lp
q

=
∥∥∥f(r){2j < r < 2j+1}∥Lp(rdr)

∥∥
ℓq
j (Z)

. (1.38)

2. Generalized Hasimoto transform

In this section, we recall from the previous papers [11, 10, 9] the equation for
the remainder part, which is written in terms of a derivative vanishing exactly on
the harmonic maps, and so independent of the decomposition. The equation was
originally derived in [6] in the case of small energy solutions (hence with no harmonic
map component), and called there the generalized Hasimoto transform.

Under the m-equivariance assumption (1.13), the Landau-Lifshitz equation (1.6)
is equivalent to the following reduced equation for v⃗(r, t):

v⃗t = P v⃗
a

[
∂2

r +
∂r

r
+

m2

r2
R2

]
v⃗. (2.1)
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Define the operator ∂v⃗ on vector-valued functions by

∂v⃗ := ∂r −
m

r
J v⃗R. (2.2)

Since for any vector b⃗, J v⃗Rb⃗ = k⃗(v⃗ · b⃗)− (k⃗ · v⃗)⃗b, we have J v⃗R = −v3 on the tangent
space Tv⃗S2 = v⃗⊥. For future use, we denote the corresponding operator on scalar
functions by

Lv⃗ := ∂r +
mv3

r
. (2.3)

Then equation (2.1) can be factored as

v⃗t = −P v⃗
a D∗

v⃗∂v⃗v⃗, (2.4)

where

D := P v⃗∂P v⃗ (2.5)

will always denote a covariant derivative (which acts on Tv⃗S2-valued functions), and
∗ denotes the adjoint in L2(R2). Denote the right-most factor in (2.4) by

w⃗ := ∂v⃗v⃗ = v⃗r −
m

r
P v⃗k⃗. (2.6)

Then (2.4) becomes v⃗t = −P v⃗
a D∗

v⃗w⃗, and applying Dv⃗ to both sides yields

Dtw⃗ = −P v⃗
a Dv⃗D

∗
v⃗w⃗. (2.7)

Now we rewrite the equation for w⃗ by choosing an appropriate orthonormal frame
field on Tv⃗S2, realized in C3. Let e = e(t, r) satisfy

Re e ∈ v⃗⊥, |Re e| = 1, Im e = J v⃗ Re e. (2.8)

Let S, T be real scalar, and let q, ν be complex scalar, defined by

w⃗ = q ◦ e, P v⃗k⃗ = ν ◦ e, Dte = −iSe, Dre = −iTe. (2.9)

Then we have the general curvature relation

[Dr, Dt]e = i(Tt − Sr)e = i det
(
v⃗ v⃗r v⃗t

)
e. (2.10)

Using the equation (2.4) for v⃗, we get

Tt − Sr = (w⃗ +
m

r
P v⃗k⃗) · P v⃗

iaD
∗
v⃗w⃗. (2.11)

Now we fix e by imposing

Dre = 0, e(r = ∞) = (1, i, 0). (2.12)

(The unique existence of such e will be guaranteed by Lemma 4.1.) Then (2.11)
yields

−Sr = (q +
m

r
ν) ◦ (iaL∗

v⃗q). (2.13)

A key observation is that in the Schrödinger (non-dissipative) case a = i, we can
pull out the derivative on q: Sr = (∂r + 2

r
)(1

2
|q|2 + m

r
ν ◦ q), and so

S = −Q +

∫ ∞

r

2Q
dr

r
, Q :=

1

2
|q|2 +

m

r
ν ◦ q =

1

2
|w⃗|2 +

mw3

r
. (2.14)
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The evolution equation (2.7) for w yields our equation for q:

(∂t + iS)q = −aLv⃗L
∗
v⃗q, S =

∫ ∞

r

(q +
m

r
ν) ◦ (iaL∗

v⃗q)dr. (2.15)

This is the basic equation used to establish diffusive (a1 > 0) or dispersive (a1 = 0)
decay estimates. The operator acting on q can be expanded as

Lv⃗L
∗
v⃗ = ∂∗

r∂r +
(m − 1)2

r2
+

2m(1 − v3)

r2
+

m

r
w3. (2.16)

Following is a summary of this section:

Proposition 2.1. Let m ∈ N and u⃗(t, x) = emθRv⃗(t, r) be a (local) solution of the
Landau-Lifshitz equation (1.1), and let e(t, r) be a complex orthonormal frame field
on Tv⃗S2 satisfying

Dre = 0, e(r = ∞) = (1, i, 0), (2.17)

where D denotes the covariant derivative (2.5). Define w⃗, q and ν by

w⃗ = v⃗r −
m

r
P v⃗k⃗, q = w⃗ · e, ν = P v⃗k⃗ · e. (2.18)

Then they solve equations

(∂t + iS)q = −aLvL
∗
vq, S =

∫ ∞

r

(q +
m

r
ν) ◦ (iaL∗

vq)dr, (2.19)

where Lv = ∂r + mv3/r and L∗
v is its adjoint. If a = i, the equation of S can be

rewritten as

S = −Q +

∫ ∞

r

2Q
dr

r
, Q =

1

2
|q|2 +

m

r
ν ◦ q. (2.20)

We will use the above equations to derive decay estimates on the remainder v⃗−h⃗[µ]
via q. The following two sections are devoted to the correspondence between q and
the remainder (including the existence of e), and then in Section 5 we derive the
decay estimates.

3. Decomposition and orthogonality

In this section, we investigate the interplay between the decay estimates and
the orthogonality condition for the decomposition into the harmonic map and the
remainder, illuminating the difference between the higher and the lower degrees.

We introduce coordinates for the decomposition of the original map

v⃗ = h⃗[µ] + v̌, (3.1)

or more precisely for the remainder v̌, and a localized orthogonality condition which
determines the decomposition. The choice of coordinates is the same as in the
previous works [12, 10, 9], while the decomposition itself is different.

For each harmonic map profile h⃗[µ], µ = m log s+iα, we introduce an orthonormal
frame field

f = f [µ] := eαR(−h⃗s × j⃗ + i⃗j). (3.2)
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on the tangent space Th⃗[µ]S
2, such that the parameter derivative of h⃗[µ] is given by

dh⃗[µ] = hs
1dµ ◦ f . (3.3)

We express the difference from the harmonic map in this frame by

z := v̌ · f . (3.4)

In other words P h⃗[µ]v⃗ = z ◦ f , or v̌ = z ◦ f + γh⃗[µ], where we denote

γ :=
√

1 − |z|2 − 1 = −O(|z|2). (3.5)

As explained in the introduction, the orthogonality condition in the previous works

(z | hs
1) = 0 (3.6)

would not work for m ≤ 3 due to the slow decay of hs
1 for r → ∞. Hence instead

we determine the parameter µ by imposing localized orthogonality

(z | φs) = 0, φs = φ(r/s), (3.7)

with some smooth localized function φ(r) ∈ C∞
0 ((0,∞); R), satisfying (h1 | φ) = 1.

The fact that emθRh⃗[µ] solves (1.11) means that

∂h⃗h⃗ = 0, (3.8)

and so we have

w⃗ = ∂v⃗v⃗ = v̌r +
m

r
(hs

3v̌ + v̌3v⃗) = Lsv̌ +
m

r
v̌3v⃗. (3.9)

Hence

Lsz = Lsv̌ · f + v̌ · fr = w⃗ · f − m

r
v̌3z +

m

r
hs

1γ. (3.10)

In order to estimate z by w⃗ (or equivalently q), we introduce a right inverse of the
operator Ls = ∂r + m

r
hs

3, defined by

Rs
φg := 2πhs

1(r)

∫ ∞

0

∫ r

r′
hs

1(r
′′)−1g(r′′)dr′′φ ̸s(r′)hs

1(r
′)r′dr′ (3.11)

Then we have

LsRs
φg = g, Rs

φLsg = g − hs
1(g | φ ̸s), (3.12)

hence Rs
φ = (Ls)−1 on (φs)⊥. Moreover we have the following uniform bounds

Lemma 3.1. For all p ∈ [1,∞] and |θ| < m, we have

∥Rs
φg∥rθL∞

p
. ∥φ∥r−θL1

p′
∥g∥rθ+1L1

p
, (3.13)

where the Lp
q norm is defined in (1.38). Moreover, the condition on φ is optimal in

the following sense: if φ ≥ 0, then φ ∈ r−1L1
p′ is necessary for Rs

φ to be bounded

rθ−1L∞
p → D′(0,∞).
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We give a proof in Section 10. Note that the above bounds are scaling invariant:
denoting Dsf := f(r/s), we have

Rs
φ = sDsR

1
φD−1

s , Ls = s−1DsL
1D−1

s . (3.14)

We can combine the estimates of the Lemma with the embedding

rθ1Lp1
q1

⊂ rθ2Lp2
q2

⇐⇒ 2

p1

− θ1 =
2

p2

− θ2, p1 ≥ p2, q1 ≤ q2. (3.15)

The above lemma is used as follows. First note that the orthogonality (φs | z) = 0
implies that z = Rs

φLsz because of (3.12). For the energy norm, we choose θ = 0
and p = 2 in Lemma 3.1. Then

∥z/r∥L2
x

. ∥z∥L∞
2

. ∥φ∥L1
2
∥Lsz∥rL1

2
. ∥Lsz∥L2

x
. (3.16)

Since |Ls − ∂r| . 1/r, we further obtain

Rs
φ : rθL2 → rθX, (|θ| < m), (3.17)

where the space X is defined by the norm

∥z∥X := ∥z/r∥L2
x

+ ∥zr∥L2
x
. (3.18)

The Sobolev embedding X ⊂ L∞ is trivial by Schwarz:

∥z∥2
L∞

x
≤ ∥z/r∥L2

x
∥zr∥L2

x
. (3.19)

Hence we get by using (3.10),

∥z∥X . ∥Lsz∥L2 . ∥q∥L2 + ∥z∥L∞∥z∥X . (3.20)

For L2
t estimates of z, we use Lemma 3.1 with θ = 1 and p = ∞. Then we have

∥z/r∥L∞
p

. ∥φ∥r−1L1
1
∥Lsz∥r2L1

p
. ∥Lsz∥L∞

p
, (3.21)

for any p ∈ [1,∞], and so by using (3.10),

∥z/r∥L2
t L∞

p
. ∥q∥L2

t L∞
p

+ ∥z∥L∞
t,x
∥z∥L2

t L∞
p

. (3.22)

If we were to use h1 instead of φ, then we would need m > 3 for the Strichartz-
type bound (3.22), and m > 2 for the energy bound (3.16), by the last statement of
the lemma.

As a summary of this section, we have

Proposition 3.2. Let m ≥ 2, v⃗(r) ∈ Σm and, for some µ = m log s + iα ∈ C,

v⃗ = h⃗[µ] + v̌, z = v̌ ◦ f , (3.23)

where f is the orthonormal frame on Th⃗[µ]S
2 defined in (3.2). Suppose that

(z|φs) = 0, φs := φ(r/s) (3.24)

for a fixed φ ∈ C0(0,∞) satisfying (h1|φ) = 1. Then we have the estimates

∥z∥X := ∥z/r∥L2
x

+ ∥zr∥L2
x

. ∥q∥L2
x

+ ∥z∥L∞
x
∥z∥X ,

∥z/r∥L∞
p

. ∥q∥L∞
x

+ ∥z∥L∞
x
∥z∥L∞

p
(1 ≤ p ≤ ∞),

∥z∥L∞
x

. ∥z∥X ,

(3.25)

where q = w⃗ · e is the same as in Proposition 2.1.
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In the next section, we see that such an orthogonal decomposition uniquely exists
for v⃗ ∈ Σm with energy close to the ground one, with small norms for q and z, so
that we can dispose of the quadratic terms in the above estimates.

4. Coordinate change

Before beginning the estimates for the evolution, we establish in this section the
bi-Lipschitz correspondence between the different coordinate systems: v⃗ and (µ, q),
including unique existence of the decomposition. It is valid for any map in our class
Σm with energy close to the ground states.

For that purpose, we need to translate between the different frames e and f . At
each point (t, r), we define M = f ⊗ e ∈ GLR(C), a real-linear map C → C, by

Mz := f · (e ◦ z). (4.1)

Its transpose tM = e ⊗ f , defined by tMz = e · (f ◦ z), is the adjoint in the sense
that (Mz) ◦ w = z ◦ (tMw). For any b, c,d ∈ C3 we have

b · (c ◦ d) = (Reb · c) ◦ d + (Imb · c) ◦ d. (4.2)

Since f(∞) = e−iαe(∞), and f ⊥ h⃗[µ], we have

M(∞) = e−iα, Mr = f ⊗ er + fr ⊗ e = −f ⊗ v̌(e · v⃗r) −
m

r
hs

1v̌ ⊗ e. (4.3)

Then e can be recovered from M by

e = P h⃗[µ]e + (⃗h[µ] · e)⃗h[µ] = tMf − (1 + γ)−1(tMz)⃗h[µ], (4.4)

provided that |γ| < 1. We further introduce some spaces with (pseudo-)norms.

Em(v⃗) = E(emθRv⃗(r)), |µ|C = min(|Re µ|, 1) + dist(Im µ, 2πZ),

∥z∥X = ∥z/r∥L2
x

+ ∥zr∥L2
x
, ∥M∥Y = ∥Mr∥L1(dr) + ∥M∥L∞

r

Σm(δ) = {v⃗(r) : [0,∞] → S2 | v⃗(0) = −k⃗, v⃗(∞) = k⃗, Em(v⃗) ≤ 4mπ + δ2},

L2(δ) = {q(r) : [0,∞) → C | ∥q∥L2
x
≤

√
2δ}, C = C/2πiZ.

(4.5)

The metric on C is defined such that

∥h⃗[µ1] − h⃗[µ2]∥X ∼ ∥h⃗[µ1] − h⃗[µ2]∥L∞ ∼ |µ1 − µ2|C . (4.6)

The following lemma is the goal of this section.

Lemma 4.1. Let m ∈ N and φ ∈ C1
0(0,∞) satisfy (φ | h1) = 1. Then there exists

δ > 0 such that the system of equations

v⃗ = h⃗[µ] + v̌, z = v⃗ · f [µ], (z | φs) = 0, γ =
√

1 − |z|2 − 1,

q = e ◦ (v⃗r −
m

r
P v⃗k⃗), Dre = 0, e(∞) = (1, i, 0),

(4.7)

defines a bijection from v⃗ ∈ Σm(δ) to (µ, q) ∈ C × L2(δ), which is unique under
the condition ∥z∥L∞

x
. δ. v̌, z and e are also uniquely determined. Moreover, if

(v⃗j, . . . , ej) with j = 1, 2 are such tuples given in this way, then we have

∥v̌1 − v̌2∥X + ∥z1 − z2∥X + ∥e1 − e2∥L∞ + ∥M1 −M2∥Y

. ∥v⃗1 − v⃗2∥X ∼ |µ1 − µ2|C + ∥q1 − q2∥L2 ,
(4.8)
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where Mj := f j ⊗ ej.

In particular, we have pointwise smallness

∥v̌∥L∞
x
∼ ∥z∥L∞

x
. δ ≪ 1, (4.9)

so that we can neglect higher order terms in z or v̌.

Proof. We always assume (3.9), (3.4) and (3.5), which define the maps

v⃗ 7→ w⃗ = q ◦ e, (v⃗, µ) 7→ v̌ ↔ z 7→ γ, (v̌, µ) 7→ v⃗, (4.10)

with the Lipschitz continuity

∥w⃗1 − w⃗2∥L2 . ∥v⃗1 − v⃗2∥X , ∥γ1 − γ2∥X . ∥z1 − z2∥X ∼ ∥v̌1 − v̌2∥X ,∣∣∥v⃗1 − v⃗2∥X − ∥v̌1 − v̌2∥X

∣∣ . |µ1 − µ2|C .
(4.11)

The energy can be written as

2Em(v⃗) = ∥v⃗r∥2
L2

x
+

∥∥∥m

r
Rv⃗

∥∥∥2

L2
x

= ∥v⃗r∥2
L2

x
+

∥∥∥m

r
P v⃗k⃗

∥∥∥2

L2
x

= ∥w⃗∥2
L2

x
+ 2m(v⃗r | P v⃗k⃗/r) = ∥w⃗∥2

L2
x

+ 4π[v3(∞) − v3(0)].

(4.12)

Since ∥P k⃗v⃗∥X . Em(v⃗)1/2, X ⊂ L∞
x and |v⃗| = 1, the boundary conditions v3(0) = −1

and v3(∞) = 1 make sense in the energy norm.
Next we consider a point orthogonality. Let v⃗ ∈ Σm(δ). Since v3(0) < 0 < v3(∞)

and v3(r) is continuous, we have v⃗(s0) = eiα0Rh⃗(1) for some µ0 = m log s0 + iα0, so

that v⃗ = h⃗[µ0] + v̌ is a decomposition satisfying (z | φs0) = 0 if φ(r) = δ(r − 1). In
this case v⃗ is recovered from (w⃗, µ0) by solving the ODE:

Lsz = w⃗ · f [µ0] −
m

r
v̌3z +

m

r
hs0

1 γ, z(s0) = 0, (4.13)

or the equivalent integral equation

z = Rs0

δ(r−1)

[
w⃗ · f [µ0] −

m

r
v̌3z +

m

r
hs0

1 γ
]
. (4.14)

The uniform bound on Rs
δ(r−1) can be localized onto any interval I ∋ s0, because z

is the solution of the above initial value problem. Hence we get, in the same way as
in (3.16),

∥z∥rL2
x∩L∞

x (I) . ∥q∥L2
x(I) + ∥z∥L∞

x (I)∥z∥rL2
x(I). (4.15)

Since z(s0) = 0 and ∥q∥L2
x
≤ δ ≪ 1, we get by continuity in r for I → (0,∞),

∥z∥X∩L∞
x

. ∥q∥L2
x

. δ. (4.16)

Thus every v⃗ ∈ Σm(δ) is close at least to some h⃗[µ0], and we have v⃗1 − v⃗2 ∈ X by
(4.11). Σm(δ) is a complete metric space with this distance.

Now we take any φ ∈ C1
0(0,∞) satisfying (φ | h1) = 1, and look for µ around µ0

solving the orthogonality

F (µ) := (v⃗ · f [µ] | φ ̸s) = (v̌ · f [µ] | φ ̸s) = (z | φ ̸s) = 0. (4.17)
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Its derivative in µ is given by

dF = −(v⃗ · hs
1h⃗[µ] | φ ̸s)dµ − i(v⃗ · hs

3f [µ] | φ ̸s)dα − (v⃗ · f [µ] | (r∂r + 2)φ ̸s)
ds

s

= −dµ − (v̌ · h⃗[µ] | hs
1φ̸

s)dµ − (v̌ · f [µ] | (r∂r + 2)φ̸sds/s + ihs
3φ

̸sdα)

= −dµ + O(δ|dµ|).

(4.18)

In particular we have

|F (µ0)| . δ,
∂F

∂µ
(µ0) = −I + O(δ). (4.19)

In addition, both F (µ) and ∂µF are Lipschitz in v⃗. Therefore by the implicit map-
ping theorem, if δ > 0 is small enough, there exists a unique µ ∈ C for each v such
that F (µ) = 0 and |µ − µ0| . δ, and v⃗ 7→ µ is Lipschitz. Then

∥z∥L∞
x

. ∥v⃗ − h⃗[µ0]∥L∞
x

+ |µ0 − µ| . δ ≪ 1, (4.20)

and so by the same argument as for (4.16), we get ∥z∥X . δ, and in addition,

∥z1 − z2∥X . |µ1 − µ2|C + ∥w⃗1 − w⃗2∥L2 . (4.21)

If we have two such µ = µ1, µ2 with ∥zj∥L∞ . δ, then

|µ1 − µ2|C ∼ ∥h⃗[µ1] − h⃗[µ2]∥L∞
x

. ∥v⃗ − h⃗[µ1]∥L∞
x

+ ∥v⃗ − h⃗[µ2]∥L∞
x

. δ, (4.22)

and so the implicit mapping theorem implies that µ1 = µ2. Thus we get a bijection
v⃗ 7→ (µ, w⃗) with the Lipschitz continuity

∥v⃗1 − v⃗2∥X ∼ |µ1 − µ2|C + ∥w⃗1 − w⃗2∥L2
x
. (4.23)

For the frame field e, we consider the matrix M = f ⊗ e, together with the
equivalent set of equations (4.3) and (4.4). Integrating (4.3) from r = ∞, we get

∥M− eiα∥Y . ∥v̌/r∥L2
x
∥v⃗r∥L2

x
+ ∥v̌/r∥L2

x
∥hs

1/r∥L2
x

. δ,

∥M1 −M2∥Y . |µ1 − µ2|C + δ∥v⃗1 − v⃗2∥X + δ∥e1 − e2∥L∞ + ∥v̌1 − v̌2∥X ,
(4.24)

while (4.4) provides

∥e1 − e2∥L∞
x

. ∥M1 −M2∥L∞
x

+ |µ1 − µ2|C + ∥z1 − z2∥L∞
x

. (4.25)

Hence for fixed v⃗ ∈ Σm(δ) (and µ), we can get (M, e) ∈ Y ×L∞ by the contraction
mapping principle for the system of (4.3) and (4.4). Moreover we get

∥M1 −M2∥Y + ∥e1 − e2∥L∞
x

. ∥v⃗1 − v⃗2∥X . (4.26)

If (µ, q) ∈ C ×L2(δ) is given, we consider the system of equations (4.3), (4.4) and

z = Rs
φ

[
Mq − m

r
v̌3z +

m

r
hs

1γ
]
, (4.27)

which is equivalent to the q equation in (4.7) under the orthogonality (z | φ ̸s) = 0.
The last equation provides, through the uniform bound on Rs

φ,

∥z1 − z2∥X . |µ1 − µ2|C + ∥q1 − q2∥L2
x

+ δ∥M1 −M2∥Y + δ∥z1 − z2∥X . (4.28)
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Combining this with (4.24) and (4.25), we get (z,M, e) for any fixed (µ, q) by the
contraction mapping, and moreover they satisfy

∥z1 − z2∥X + ∥M1 −M2∥Y + ∥e1 − e2∥L∞ . |µ1 − µ2|C + ∥q1 − q2∥L2
x
. (4.29)

¤
So far we have derived estimates at each fixed t, for the energy norms in the above

lemma, and for the dispersive norms in Proposition 3.2. Now we turn to the main
part of this paper, the analysis of the global dynamics.

5. Decay estimates for the remainder

In this section, we derive dissipative or dispersive space-time estimates of the
remainder v̌ in terms of z, from the equation (2.15) for q. First by the smallness of
z, we obtain from (3.20) and (3.22),

∥z(t)∥X . ∥q(t)∥L2 . δ, ∥z/r∥L∞
p

. ∥q∥L∞
p

, (5.1)

for all p ∈ [1,∞]. Next we estimate the factor S, by using

∥r
∫ ∞

r

fgdr∥L∞
1

.
∑
j∈Z

∑
k≥j

2j−k∥fg∥L1(r∼2k) ∼ ∥fg∥L1 ≤ ∥f∥L2∥g∥L2 . (5.2)

Then from the expression in (2.15) for S, we have

∥S(t)∥L2
1

. ∥S(t)∥r−1L∞
1

. (∥q∥L2
x

+ ∥z∥rL2
x

+ 1)∥L∗
v⃗q∥L2

x
. ∥L∗

v⃗q∥L2
x
. (5.3)

In the dispersive case a1 = 0, we avoid the derivative by using expression (2.14)

∥S(t)∥L2
1

. ∥S(t)∥r−1L∞
1

. (∥q∥L2
x

+ ∥z∥rL2
x

+ 1)∥q∥L∞
2

. ∥q∥L∞
2

(a1 = 0). (5.4)

For the time decay estimates, we treat the dissipative and the dispersive cases sep-
arately.

5.1. Dissipative L2
t estimate. Here we assume a1 > 0. By the equation (2.15) of

q, we have

∂t∥q∥2
L2 = −2a1∥L∗

v⃗q∥2
L2 , (5.5)

hence

∥q∥L∞
t L2

x
+ ∥L∗

v⃗q∥L2
t L2

x
. ∥q(0)∥L2

x
∼ δ. (5.6)

Since Rs∗
φ Ls∗ = I and Rs∗

φ : L2 → rL2 by Lemma 3.1 and duality, we have

∥q∥rL2
x

. ∥Ls∗q∥L2
x

. ∥L∗
v⃗q∥L2

x
+ ∥v̌∥L∞∥q∥rL2

x
. (5.7)

Since the last term can be absorbed by (4.9) smallness of v̌, we get

∥q∥X . ∥q/r∥L2
x

+ ∥Ls∗q∥L2
x

. ∥L∗
v⃗q∥L2

x
. (5.8)

So by using the bound (3.17) on Rs
φ, we obtain

∥z∥rL2
t X . ∥q∥L2

t X . ∥L∗
v⃗q∥L2

t,x
. ∥q(0)∥L2

x
∼ δ, (5.9)

and also from (5.3),

∥S∥L2
t L2

x
. δ. (5.10)
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5.2. Dissipative decay. Next we show the convergence q → 0 as t → ∞, by
comparing it with the free evolution. For T > 0, let

qT := q − e(t−T )a∆
(m−1)
2 q(T ). (5.11)

Then we have

qT
t − a∆

(m−1)
2 qT = (iS − aV )q, qT (T ) = 0, (5.12)

where the potential V (t, x) is given by

V =
2m(1 − v3)

r2
+

m

r
w3. (5.13)

Multiplying the equation with qT , we get the energy identity

1

2
∥qT∥2

L2
x

+

∫ t

T

a1(∥qT
r ∥2

L2
x

+ ∥m − 1

r
qT∥2

L2
x
)dt = Re

∫ t

T

(−aV q + iSq | qT )dt, (5.14)

and hence by Schwarz, and using estimate (5.3) to put S ∈ L2
t L

2
x,

∥qT∥L∞
t>T L2

x∩L2
t>T X . ∥q/r∥L2

t>T L2
x

+ ∥Sq∥L2
t>T L1

x
+ ∥q∥2

L4
t>T L4

x

. ∥q/r∥L2
t>T L2

x
+ ∥q∥L∞

t L2
x
∥q∥L2

t>T X → 0 (T → ∞),
(5.15)

Hence ∥q(t)∥L2
x

can not converge to a positive number, since e(t−T )a∆
(m−1)
2 q(T ) → 0

as t → ∞ for all T > 0. Thus we obtain

∥z(t)∥X . ∥q(t)∥L2
x
→ 0 (t → ∞). (5.16)

5.3. Dispersive L2
t estimate. Next we consider the case a1 = 0 (and a2 ̸= 0). We

set (with no loss of generality) a = i. Since the energy identity provides only L2
x

bound on q, we have to work with the Strichartz estimate in a perturbative way.
Denoting Hs := LsLs∗, the equation of q is given by

qt + iHs(0)q = N1 + N2, (5.17)

where

N1 := −2am
h

s(0)
3 − h

s(t)
3

r2
q, N2 := iSq − 2am

v̌3

r2
q − am

w3

r
q, (5.18)

and S is given by (2.14). We have

|N1| . |h3(s(t)/s(0))||q|/r2, (5.19)

and so

∥N1∥L2
t L1

2
. ∥h3(s(t)/s(0))∥L∞

t
∥q∥L2

t L∞
2

. (5.20)

Using (5.4), we have

∥Sq∥L1
t L2

x
≤ ∥S∥L2

t L2
x
∥q∥L2

t L∞
x

. ∥q∥2
L2

t L∞
2

. (5.21)

The other terms in N2 are bounded in L1
t L

2
x by

∥q∥2
L2

t L∞
2

+ ∥z/r∥L2
t L∞

2
∥q∥L2

t L∞
2

. ∥q∥2
L2

t L∞
2

. (5.22)

Now we need the endpoint Strichartz estimate for Hs with fixed scaling s:
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Lemma 5.1. Let Hs = LsLs∗ = −∆
(m−1)
2 + 2mr−2(1 − hs

3) and m > 1. Then we
have

∥e−iHstφ∥L∞
t L2

x∩L2
t L∞

2
. ∥φ∥L2

x

∥
∫ t

−∞
e−iHs(t−t′)f(t′)dt′∥L∞

t L2
x∩L2

t L∞
2

. ∥f∥L1
t L2

x+L2
t L1

2
,

(5.23)

uniformly for any fixed s > 0.

This Lemma will be proved in Section 10.2. Hence if | log(s(t)/s(0))| ≪ 1 for all
t, then we have

∥q∥L∞
t L2

x∩L2
t L∞

2
. ∥q(0)∥L2 ∼ δ, (5.24)

and also from (5.4)

∥S∥L2
t L2

x
. δ. (5.25)

5.4. Dispersive decay. Next we prove the following asymptotics of scattering type
for q and z:

e−it∆
(m−1)
2 q(t) → ∃q+ in L2

x, z → 0 in L∞
x (t → ∞). (5.26)

For the scattering of q, we further expand the equation

qt − i∆
(m−1)
2 q = N0 + N2, (5.27)

where N2 is as in (5.18), and

N0 := −2am
1 − hs

3

r2
q (5.28)

Then the global Strichartz bound implies that

∥N0∥L2
t L1

2(T,∞) → 0, ∥N2∥L1
t L2

x(T,∞) → 0 (5.29)

as T → ∞. By Strichartz (for ∆
(m−1)
2 ) once again, we get the scattering of q.

For the vanishing of z, we use the inversion formula

z = Rs
φg, g = Mq + r−1m(hs

1γ − v̌3z). (5.30)

Since Rs
φ is bounded L2

x → L∞, the latter two terms contribute at most with
∥z∥L∞

x
∥z/r∥L2

x
≪ ∥z∥L∞

x
, hence we may drop them. Also we may replace q by

its asymptotic free solution q∞ := eit∆
(m−1)
2 q+. Moreover we may approximate q+

by nicer functions. Hence we assume that q̂ := Fm−1q+ ∈ C∞
0 (0,∞). Then we may

further replace the free solution with the stationary phase part:

q∞(t, r) = Cmt−1eir2/(4t)

∫ ∞

0

Jm−1(rρ/(2t))eiρ2/(4t)q+(ρ)ρdρ

= Cmt−1eir2/(4t)q̂(r/(2t)) + R,

(5.31)

where the error is bounded by Plancherel

∥R∥L2
x
∼ ∥(1 − eir2/(4t))q+∥L2

x
. t−1∥r2q+∥L2

x
→ 0. (5.32)
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Now that spatially local vanishing is clear (eg. it follows from ∥Rs
φMq(t)∥rL∞ .

∥q∞(t)∥L∞ → 0), we may extract the leading term of Rs
φ for large x. We assume

that s(t) ∈ L∞
t and supp φs ⊂ (0, b) for a fixed b ∈ (0,∞). Then for r > b we have

(Rs
φg)(r) = o(1) +

∫ r

b

hs
1(r)

hs
1(r

′′)
g(r′′)dr′′

= o(1) +

∫ r

b

(r′/r)mg(r′)dr′ as r → ∞.

(5.33)

Thus we are reduced to showing that

Gχ :=

∫ r

b

(ρ/r)mM(t, ρ)t−1eiρ2/(4t)χ(ρ/t)dρ → 0 in L∞
r (5.34)

for any χ ∈ C∞
0 (0,∞). By partial integration on (ρ/t)eiρ2/(4t), we have

rmGχ = (i/2)[ρm−1M(ρ)eiρ2/(4t)χ(ρ/t)]rb

−
∫ r

b

[
(m − 1)M(ρ)χ(ρ/t)/ρ + M(ρ)χ′(ρ/t)/t

+ Mr(ρ)χ(ρ/t)
]
ρm−1eiρ2/(4t)dρ, (5.35)

The right hand side is bounded by rm/t, using |χ(ρ/t)| . ρ/t for the first, second
and fourth terms, |χ′(ρ/t)| . 1 for the third, and Mr ∈ L∞

t L1(dr) for the fourth
term. Thus we obtain ∥z(t)∥L∞

x
→ 0.

Thus we have obtained the following a priori estimates in this section

Proposition 5.2. Let m ≥ 2 and u⃗(t, x) = emθRv(t, r) be a solution of (1.1) on
0 < t < T with u⃗(0) ∈ Σm and E(u⃗(0)) ≤ 4mπ + δ2 for some small δ > 0. Let q, z, S
be as in Proposition 2.1, and let µ(t) be given by Lemma 4.1.

(I) If a1 > 0, then we have

∥z∥L∞
t (0,T ;X)∩L2

t (0,T ;rX) . ∥q∥L∞
t (0,T ;L2

x)∩L2
t (0,T ;X) . ∥q(0)∥L2

x
∼ δ. (5.36)

Moreover, if T = ∞ then

∥z(t)∥X . ∥q(t)∥L2
x
→ 0 (t → ∞). (5.37)

(II) If a1 = 0 and s(t) = s(0) + O(δ), then we have

∥z∥L∞
t (0,T ;X)∩L2

t (0,T ;rL∞
2 ) . ∥q∥L∞

t (0,T ;L2
x)∩L2

t (0,T ;L∞
2 ) . ∥q(0)∥L2

x
∼ δ. (5.38)

Moreover, if T = ∞ and s(t) converges as t → ∞, then

∥z(t)∥L∞
x
→ 0, ∥q(t) − e−it∆

(m−1)
2 q+∥L2

x
→ 0, (t → ∞) (5.39)

for some radial q+ ∈ L2
x. ∆

(m−1)
2 is the (m − 1)-equivariant Laplacian, see (1.37).

Note that the decay of z is transferred to the remainder v̌ by Lemma 4.1. By
using the above arguments and Lemma 4.1, it is easy to see that the solution is
global unless s(t) → 0 in finite time (for a detailed proof, see [11, Section 3]). The
remaining sections are therefore devoted to the analysis of the parameter dynamics,
which is the most novel part of this paper.



20 STEPHEN GUSTAFSON, KENJI NAKANISHI, AND TAI-PENG TSAI

6. Parameter evolution

It remains to control the asymptotic behavior of the parameter µ(t) of the har-
monic map part of the solution. Its evolution is determined by differentiating the
localized orthogonality condition

0 = ∂t(z | φs) = (v̌t · f | φs) + (v̌ · ft | φs) + (z | ∂tφ
s), (6.1)

and each term on the right is expanded by using

v̌t = v⃗t − h⃗[µ]t = −(aL∗
v⃗q) ◦ e − hs

1µ̇ ◦ f ,

ft = −ihs
3α̇f − hs

1µ̇h[µ], ∂tφ
s = − ṡ

s
r∂rφ

s.
(6.2)

Plugging this into the above and then dividing it by s2, we get

µ̇ = −(MaL∗
v⃗q | φ ̸s) − (hs

1µ̇γ | φ ̸s) − (z | (
µ̇1

m
r∂r − iµ̇2h

s
3)φ

̸s). (6.3)

The last two terms are bounded by

|µ̇|∥z∥L∞(∥φ∥L1 + ∥r∂rφ∥L1), (6.4)

and so absorbed by the left hand side since ∥z∥L∞ . δ ≪ 1.

Since |ν| = |P vk⃗| . hs
1 + |v̌| and hence

|v⃗r| . |q| + |z|/r + hs
1/r, (6.5)

we get from (4.3),

|Mr| . |qz| + |z|2/r + |zhs
1|/r. (6.6)

The leading (first in the r.h.s) term in (6.3) can be estimated, using [Ma, L∗
v⃗] =

Mra, as follows

|(MaL∗
v⃗q | φ̸s)| . s−1(∥Mr∥L2

x
+ ∥M∥L∞

x
)∥q∥rL2

x

. s−1(∥q∥L2
x

+ ∥z/r∥L2
x

+ 1)∥q∥rL2
x
.

(6.7)

Hence using that ∥z∥L∞
x

. ∥z∥X . ∥q∥L2 . δ ≪ 1, we get

∥sµ̇∥L2
t

. ∥q/r∥L2
t,x

. ∥q∥L2
t L∞

2
. (6.8)

Then the last two terms of (6.3) are bounded in L1
t by

∥sµ̇∥L2
t
∥z/r∥L2

t L∞
x
∥(r|φ| + r2|φr|)

̸s∥L1
x

. ∥q∥2
L2

t L∞
2

, (6.9)

where we used (5.1). Thus we have obtained

Proposition 6.1. Let v⃗, q, µ, φ and M as in Proposition 5.2 and Lemma 4.1.
Then µ(t) satisfies

µ̇ = −(MaL∗
v⃗q | φ̸s) + error, (6.10)

where L∗
v⃗ = −∂r − 1/r + mv3/r, and

∥sµ̇∥L2
t (0,T ) . ∥q∥L2

t (0,T ;L∞
2 ), ∥error∥L1

t (0,T ) . ∥q∥2
L2

t (0,T ;L∞
2 ), (6.11)

Thus our problem is reduced to the global behavior of the above term on the
right, which is linear in q.
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7. Partial integration for the parameter dynamics

Now we want to integrate in t the right hand side of (6.3), which is not bounded
in L1

t . The key idea is to employ the q equation (2.15), by identifying a factor of
Lv⃗L

∗
v⃗q, through a partial integration in space.

For the spatial integration, we first freeze the phase factor M. Since h⃗[µ] = v⃗ =

−k⃗ at r = 0, we have M(t, 0) = eieα, i.e. f(t, 0) = eieαe(t, 0) for some real α̃(t). Then
Dtf(t, 0) = iα̃′(t)f(t, 0) − iS(t, 0)f(t, 0), and so

α̃′(t) = S(t, 0) + α′(t). (7.1)

We decompose

M = eieα + M̌, (7.2)

and rewrite the leading term of (6.3) as follows. Let c = ∥h1∥−2
L2 . Since Lv⃗ =

Ls + mv̌3/r and Lshs
1 = 0, we have

(MaL∗
v⃗q | φ ̸s) = aeieα(L∗

v⃗q | φ ̸s) + (M̌aL∗
v⃗q | φ ̸s)

= aeieα
[
(L∗

v⃗q | (φ − ch1)
̸s) + (mqv̌3/r | ch1

̸s)
]

+ (M̌aq | Lv⃗φ̸
s) + (M̌raq | φ ̸s).

(7.3)

The second term is bounded by ∥qv̌r−3∥L1
x

. ∥q/r∥L2
x
∥z/r2∥L2

x
, and the last two

terms are bounded by

∥q/r∥L2
x
(∥Mr/r∥L2

x
+ ∥M̌/r∥L∞

x
). (7.4)

where the last factor is further bounded by using that M̌ = 0 at r = 0

∥M̌/r∥L∞
x

. ∥Mr/r∥L2
x

. ∥q/r∥L2
x

+ ∥z/r2∥L2
x

. ∥q∥L∞
2

. (7.5)

We further rewrite the remaining (main) term. By the definition of c, we have

(φ − ch1 | h1) = 1 − c∥h1∥2
L2 = 0, (7.6)

and so we have

φs − chs
1 = Ls∗Rs∗

φ (φs − chs
1), (7.7)

where the operator Rs
φ was defined in (3.11). Let

ψ := R∗
φ(φ − ch1) = − c

m − 1
r1−m + O(r1−3m) (r → ∞), (7.8)

where the asymptotic form easily follows from the fact that

ψ(r) = −c(h1(r)r)
−1

∫ ∞

r

h1(r
′)2r′dr′ (r ≫ 1). (7.9)

Then we have, by using equation (2.15) for q,

(−aL∗
v⃗q|(φ − ch1)

̸s) = (−aLsL∗
v⃗q | ψs/s)

= (qt − iSq | ψs/s) + (amq | Lv⃗v̌3r
−1ψs/s),

(7.10)

and, using (3.9), the last term is bounded by

∥q(|q| + |v̌/r|)r−2∥L1
x

. (∥q/r∥L2
x

+ ∥z/r2∥L2
x
)2 . ∥q∥2

L∞
2

. (7.11)
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For m ≥ 2, ψ ∈ L2
∞, and so

∥(Sq | ψs/s)∥L1
t

. ∥S∥L2
t L2

x
∥q∥L2

t L∞
2

. δ∥q∥L2
t L∞

2
, (7.12)

either by (5.10) or (5.25). Thus we have obtained

∥µ̇ − eieα(qt | ψs/s)∥L1
t

. δ∥q∥L2
t L∞

2
. (7.13)

Integrating by parts in t, the leading term is rewritten as

eieα(qt | ψs/s) = ∂t(e
ieαq | ψs/s) − i(sα̇ + sS(t, 0))(eieαq | ψ ̸s)

+ ṡ(eieαq | (r∂r + 1)ψ ̸s).
(7.14)

The last term can be bounded in L1
t by using (6.8),

∥sµ̇∥L2
t
∥(q | (r∂r + 1)ψ ̸s)∥L2

t
. ∥q∥L2

t L∞
2
∥(q | (r∂r + 1)ψ ̸s)∥L2

t
. (7.15)

If m = 2 or m > 3, then (r∂r + 1)ψ ∈ L1, and so the above is further bounded by
∥q∥2

L2
t L∞

2
. When m = 3, we need some extra effort to bound the last factor in L2

t –

this is done in the next section.
If m > 2, we have for the leading term

|(eieαq | ψs/s)| . ∥q∥L2
x
∥ψ∥L2

x
. ∥q(0)∥L2

x
, (7.16)

while for m = 2 this term can be infinite from the beginning. We will show in
Section 9 that the time difference [(eieαq | ψs/s)]t0 can be controlled for finite t, but
still may become unbounded as t → ∞ for some initial data.

This also means that the second last term of (7.14) is beyond our control when
m = 2, and so in this case we force it to vanish by making the assumptions a2 = 0
and v2 = 0. For the other cases (m > 2), we should estimate S(t, 0), for which we
use in the Schrödinger case (a = i) that

S = −Q +

∫ ∞

r

2Q

r
dr, Q =

1

2
|q|2 +

m

r
w3 = O(|q|2 + |z/r|2 + qhs

1/r), (7.17)

since |w3| . |q||ν| and |ν| . hs
1 + |z|. Thus we get at each t, using (5.1),

∥S∥L∞
x

. ∥q∥2
L∞

2
+ s−1∥q∥L∞ . (7.18)

Then the second term in (7.14) is bounded in L1
t

∥q∥2
L2

t L∞
2
∥(q | ψs/s)∥L∞

t
+ (∥sα̇∥L2

t
+ ∥q∥L2

t L∞
x

)∥(q | ψ ̸s)∥L2
t

. ∥q∥L2
t L∞

2
(δ + ∥(q | ψ ̸s)∥L2

t
),

(7.19)

where we used (6.8). If m > 3, then ψ ∈ L1 and hence the last factor ∥(q | ψ ̸s)∥L2
t

is bounded by ∥q∥L2
t L∞

2
. δ. Its estimate for m = 3 is deferred to the next section.

In the dissipative case a1 > 0, we estimate simply by (2.15) at each t

∥S∥L∞
x

. (∥q/r∥L2
x

+ ∥z/r2∥L2
x

+ ∥hs
1/r

2∥L2
x
)∥L∗

v⃗q∥L2
x
, (7.20)

and hence the second term in L1
t is bounded by

∥q∥L2
t L∞

2
∥q∥L2

t X + (∥sµ̇∥L2
t
+ ∥q∥L2

t X)∥(q | ψ ̸s)∥L2
t

. ∥q∥L2
t L∞

2
(δ + ∥(q | ψ ̸s)∥L2

t
),

(7.21)

where we used (6.8) and (5.9).
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Thus we have obtained all the necessary estimates to prove Theorem 1.1 when
m > 3. In summary, we have

Proposition 7.1. Under the same assumptions as for Proposition 6.1, we have

µ̇ = ∂t(e
ieαq|ψs/s) − isα̇(eieαq|ψ ̸s) + ṡ(eieαq|(r∂r + 1)ψ ̸s) + error, (7.22)

where ∥error∥L1
t (0,T ) . δ∥q∥L2

t (0,T ;L∞
2 ). Moreover, if m = 2 or m > 3, then the second

last term can be included in the error.

The proof of Theorem 1.1 for m = 3 will be complete once we show

∥(q | ψ ̸s)∥L2
t
+ ∥(q | (r∂r + 1)ψ ̸s)∥L2

t
. δ, (7.23)

which will be done in Section 8. This estimate together with the above proposition
implies the convergence of µ(t) = µ(0) + O(δ), closing all the estimates and the
assumptions in the previous sections. For Theorem 1.2, it remains to derive the
asymptotic formula (1.24) from the leading term (q | ψs/s), and to show that all of
the asymptotic behavior (1)–(6) can be realized by choice of the initial data u⃗(0, x)
– this is done in Section 9.

8. Special estimates for m = 3

In this section we finish the proof of Theorem 1.1 by showing (7.23). It suffices
to estimate the leading term for r → ∞:

∥(r−2χ(r) | q)∥L2
t

. δ, (8.1)

with χ ∈ C∞ satisfying χ(r) = 0 for r < 1 and χ(r) = 1 for r > 2, since the rest
decays at slowest O(r−8) ∈ L1

x, for which we can simply use q ∈ L2
t L

∞
x . Once the

above is proved, we can conclude that

∥µ∥L∞
t

. |µ(0)| + ∥q∥L∞
t L2

x∩L2
t L∞

2
. (8.2)

The boundedness of µ and the scattering of q imply that the “normal form” correc-
tion (eiα̃q | ψs/s) converges to zero, and so µ(t) is convergent as t → ∞.

To estimate (8.1), we use perturbation from the free evolution eat∆
(2)
2 :

q̇ − a∆
(2)
2 q = N0 + N2, (8.3)

where N0 and N2 are as in (5.28) and (5.18), satisfying

N0 ∈ r−2⟨r/s⟩−4L2
t L

∞
x , N2 ∈ L1

t L
2
x. (8.4)

For the contribution of N2 as well as the initial data, we use the following estimate.

Lemma 8.1. For any l > 0, any a ∈ C× with Re a ≥ 0, and any functions g(r), f(r),
and F (t, r), we have

∥(g | eat∆
(l)
2 f)∥L2

t (0,∞) . ∥r2g∥L∞
x
∥f∥L2

x
,

∥(g |
∫ t

−∞
ea(t−s)∆

(l)
2 F (s)ds)∥L2

t (R) . ∥r2g∥L∞
x
∥F∥L1

t L2
x
.

(8.5)
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Proof. We start with the estimate for the free part. Let ĝ = Flg and f̂ = Flf . The
above L2

t norm equals by Plancherel in space,

∥(ĝ | e−atr2

f̂)∥L2
t (0,∞) ∼ ∥

∫ ∞

0

e−atσG(σ)dσ∥L2
t (0,∞), (8.6)

where we put

G(σ) := ĝ(σ2)f̂(σ2). (8.7)

If a1 > 0, then (8.6) is bounded by Minkowski

≤ ∥
∫ ∞

0

e−a1tσ|G(σ)|dσ∥L2
t (0,∞) ≤

∫ ∞

0

e−a1σ∥t−1G(σ/t)∥L2
t (0,∞)dσ

≤ ∥G∥L2
σ(0,∞)

∫ ∞

0

σ−1/2e−a1σdσ . ∥G∥L2
σ(0,∞).

(8.8)

If a1 = 0, then a2 ̸= 0 and (8.6) is bounded by Plancherel in t,

≤ ∥
∫ ∞

0

e−ia2tσG(σ)ds∥L2
t (R) ∼ ∥G∥L2

σ(0,∞). (8.9)

Thus in both cases we obtain

∥(g | eat∆
(l)
2 f)∥L2

t (0,∞) . ∥G(σ)∥L2
σ(R) . ∥ĝ∥L∞∥f̂∥L2 ∼ ∥ĝ∥L∞∥f∥L2

x
. (8.10)

Then the first desired estimate follows from

|ĝ(ρ)| ≤
∫ ∞

0

|Jl(rρ)||g(r)|rdr ≤ ∥r2g∥L∞
x

∫ ∞

0

|Jl(r)|
dr

r
∼ ∥r2g∥L∞

x
, (8.11)

since |Jl(r)| . min(rl, r−1/2) for r > 0.
By duality, the estimate on the Duhamel term is equivalent to

∥
∫ ∞

0

λ(s + t)eas∆
(l)
2 g(x)ds∥L∞

t L2
x

. ∥r2g∥L∞
x
∥λ∥L2

t
, (8.12)

which is equivalent to

∥
∫ ∞

0

λ(t)eat∆
(l)
2 g(x)dt∥L2

x
. ∥r2g∥L∞

x
∥λ∥L2

t
, (8.13)

which is dual to the first estimate. ¤
For the potential part N0, we transfer the equation to R6 by u = r−2q and consider

ut − a∆
(0)
6 u = r−2N0. (8.14)

Then thanks to the decay of the potential, we have

r−2N0 ∈ L2
t L

10/7
x (R6) ⊂ L2

t Ḣ
−1/5
3/2 (R6), (8.15)

as long as s(t) is away from 0 and ∞. Then by the endpoint Strichartz or the energy

estimate on R6, the corresponding Duhamel term is bounded in L2
t Ḣ

−1/5
3 (R6), and

since |∇xr
−4χ(r)| . r−5, we have r−4χ ∈ Ḣ1

5/4(R6) ⊂ Ḣ
1/5
3/2 (R6). Thus to summarize,

we have

∥(r−2χ | q)∥L2
t

. ∥q(0)∥L2
x

+ ∥q∥L2
t L∞

2,x
. (8.16)
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Completion of the proof of Theorem 1.1: Let initial data u⃗(0) be specified
as in Theorem 1.1. The existence of a unique local-in-time solution u⃗(t) in the
given spaces can be deduced by working in the (µ, q) variables (using the bijection
of Lemma 4.1) and using estimates similar to those of Sections 5 and 6. The details
are carried out in the Schrödinger case (a = i) in [12], and carry over to the general
case in a straightforward way (in fact, there are well-established methods for energy-
space local existence in the dissipative case, starting with the pioneering work [19]
on the heat-flow). It follows from this local theory that the solution continues as
long as µ(t) is bounded and q is bounded in L∞

t L2
x ∩ L2

t L
∞
2 .

For m > 3, the estimates of the previous four sections give the boundedness of q
and µ which ensure the solution is global, as well as the convergence of µ(t). The
convergence to a harmonic map then follows from the estimates of Section 5. ¤

9. Special estimates for m = 2, a > 0, v2 = 0

Let m = 2 and (with no further loss of generality) a = 1. By the bijective
correspondence v⃗ ↔ (µ, q), it is clear that v2 = 0 is equivalent to µ, q ∈ R. It
remains to control the leading term for the parameter dynamics

(q | ψs/s). (9.1)

In particular, we will show that this can diverge to ±∞, or oscillate between them
for certain initial data.

First by the asymptotics for r → ∞, we have ψ + cr−1
1< ∈ L2

x, where we denote

r−1
a< =

{
r−1 (r > a)

0 (r ≤ a)
r−1
<b =

{
r−1 (r < b)

0 (r ≥ b)
r−1
a<b =

{
r−1 (a < r < b)

0 (otherwise)
(9.2)

Hence we may replace s−1ψs by −cr−1
s< modulo o(1)L∞

t .

Next we want to replace q by the free solution q0 := et∆
(1)
2 q(0). For that we use

the following pointwise estimate to bound q − q0:

Lemma 9.1. Let Re a > 0 and l ≥ 1. Then for any function g(r) satisfying
|g(r)| ≤ ⟨r⟩−1, we have

|eat∆
(l)
2 g(r)| . min(1, 1/r, r/t). (9.3)

Proof. Let a1 = Re a. By using the explicit kernel we have

e2at∆
(l)
2 g(r) =

C

t

∫ ∞

0

∫ π

−π

e−a r2−2rq cos θ+q2

t
+ilθg(q)qdθdq, (9.4)

and the integral in θ can be rewritten by partial integration on eiθ as∫ π

−π

rq

ilt
sin θe−a r2−2rq cos θ+q2

t
+ilθg(q)qdθdq. (9.5)

The double integral for |q − r| > r/2 is bounded by using the second form by∫ ∞

0

rq

t2
e−a1

r2+q2

4t min(q, 1)dq . re−a1
r2

4t min(t−1/2, t−1) . min(1, r/t, 1/r), (9.6)
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and that for |q − r| < r/2 is bounded by using the first form by

t−1

∫ ∞

0

∫ π

−π

e−a1
(r−q)2

t e−a1
r2θ2

8t dθ min(r, 1)dq . t−1t1/2(t/r2)1/2 min(r, 1)

. min(1, 1/r),

(9.7)

and by the second form by . r2/t × 1/r = r/t. ¤
The nonlinear part of q contributes as

(r−1
s< | q − q0) = −

∫ t

0

(e∆
(m−1)
2 (t−t′)r−1

s(t)< | V (t′)q(t′))dt′, (9.8)

where the potential term is given by

V =
2m(1 − v3)

r2
+

m

r
w3 =

2m(1 − hs
3)

r2
+ O(v̌3/r

2) + O(q/r). (9.9)

The contribution from the last two parts is estimated with the r−1 bound from the
above Lemma, thus bounded by

(∥v̌3/r
2∥L2

t,x
+ ∥q/r∥L2

t,x
)∥q/r∥L2

t,x
. ∥q(0)∥2

L2
x
. (9.10)

We need to be more careful to estimate the other term q(1 − hs
3)/r

2. First by
Schwarz and the pointwise estimate, we have∣∣∣∣∫ t

0

(ea∆
(m−1)
2 (t−t′)r−1

s(t)< | r−2q(1 − hs
3))dt′

∣∣∣∣2
≤ ∥q/r∥2

L2
t,x

∫ t

0

∫ ∞

0

min(s(t)−1, r−1, r/(t − t′))2⟨r/s(t′)⟩−4m dr

r
dt′,

(9.11)

where we also used that |1 − h3(r)| . ⟨r⟩−2m. It suffices to bound the last double
integral. Let τ = t − t′. For 0 < τ < s(t)2, the r integral is bounded by∫ τ/s(t)

0

r2

τ 2

dr

r
+

∫ s(t)

τ/s(t)

1

s(t)2

dr

r
+

∫ ∞

s(t)

1

r2

dr

r
. s(t)−2(1 + log(s(t)2/τ)), (9.12)

hence its τ integral is bounded by∫ s(t)2

0

s(t)−2(1 + log(s(t)2/τ))dτ = 1 +

∫ 1

0

| log θ|dθ < ∞. (9.13)

For s(t)2 < τ , the r integral is bounded by∫ s(t′)

0

r2

τ 2

dr

r
+

∫ ∞

s(t′)

r2s(t′)4m

τ 2r4m

dr

r
. s(t′)2

τ 2
, (9.14)

and its τ integral is bounded by square of

∥s(t′)/τ∥L2
τ (s(t)2,t) . ∥s(t)/τ∥L2

τ (s(t)2,t) + ∥(s(t) − s(t − τ))/τ∥L2
τ (s(t)2,t)

. 1 +

∫ 1

0

∥ṡ(t − θτ)∥L2
τ (s(t)2,t)dθ

. 1 +

∫ 1

0

∥ṡ∥L2θ−1/2dθ . 1.

(9.15)
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Thus we obtain

|(r−1
s(t)< | q − q0)| . ∥q/r∥L2

t,x
(∥v̌3/r

2∥L2
t,x

+ ∥ṡ∥L2
t
+ 1) . ∥q(0)∥L2 , (9.16)

namely we may replace q by the free solution q0 in the leading asymptotic term.
Furthermore, we can freeze the scaling parameter because

|(r−1
s(t)< − r−1

s(0)< | q0)| . ∥r−1
s(t)< − r−1

s(0)<∥L2∥q0(t)∥L2

. |[log s]t0|1/2o(1) . o(1)(|[log s]t0| + 1).
(9.17)

Thus we obtain

(1 + o(1))[2 log s]t0 = −c[(r−1
s(0)< | q0)]t0 + O(1), (t → ∞) (9.18)

where O(1) is convergent.
The leading term is further rewritten in the Fourier space by using that

F1[r
−1
s(0)<](ρ) = ρ−1

∫ ∞

s(0)ρ

J1(r)dr

= ρ−1J0(s(0)ρ) = ρ−1
<1/s(0) + s(0)R(s(0)ρ), ∃R ∈ L2

x.

(9.19)

Let q̂0 := F1q(0). By Plancherel we have ∥q(0)∥L2
x

= ∥q̂0∥L2
x

and

[−(r−1
s(0)< | q0)]t0 = ((1 − e−tr2

)r−1
<1/s(0) | q̂0) + O(1)

= (r−1
1/

√
t<1/s(0)

| q̂0) + O(1)

= (F1r
−1
1/

√
t<1/s(0)

| q(0)) + O(1)

= 2π

∫ √
t

s(0)

q(0, r)dr + O(1).

(9.20)

Thus we obtain (using that c = ∥h1∥−2
L2

x
= π−2),

(1 + o(1))[log s]t0 =
1

π

∫ √
t

s(0)

q(0, r)dr + O(1), (9.21)

and the error term O(1) converges to a finite value as t → ∞.
Completion of the proof of Theorem 1.2: As in the proof of Theorem 1.1,

we now have all the estimates to conclude the solution is global (in particular, µ(t)
remains finite by the above formula and estimates), and the convergence to the
harmonic map family follows from the estimates of Section 5. It remains to consider
the asymptotics of s(t).

Since q(0) ∈ L2
x does not require

∫ ∞
1

|q(0, r)|dr < ∞, it is easy to make up
q(0) ∈ L2, for any given s(0) ∈ (0,∞), such that the first term on the right of (9.21)
attains arbitrarily given lim sup ≥ lim inf ∈ [−∞,∞] as t → ∞. In particular, all
of the asymptotic behaviors (1)-(6) in Theorem 1.2 can be realized by appropriate
choices of (q(0), s(0)), for which Lemma 4.1 ensures existence of corresponding initial
data u⃗(0) ∈ Σ2.

Using that v2 = 0, we can further rewrite the leading term in terms of v⃗. Since
e = (v3, i,−v1), we have

q = w⃗ · e = v1v3r − v3v1r +
2v1

r
= −βr +

2v1

r
, (9.22)
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where β is defined by v⃗ = (cos β, 0, sin β). Hence we have

(1 + o(1))[log s]t0 =
2

π

∫ √
t

s(0)

v1(0, r)

r
dr + O(1), (9.23)

where O(1) converges as t → ∞.
¤

10. Proofs of the key linear estimates

10.1. Uniform bound on the right inverse Rφ.

Proof of Lemma 3.1. Let s = 1 and omit it. It suffices to prove

∥Rφg∥rθL∞ . ∥φ∥r−θL1∥g∥rθ+1L1
∞

,

∥R∗
φf∥r−θ−1L∞ . ∥φ∥r−θL1

∞
∥f∥r−θL1

∞
.

(10.1)

From this we get by duality,

∥Rφg∥rθL∞
1

. ∥φ∥r−θL1
∞
∥g∥rθ+1L1 ,

∥R∗
φf∥r−θ−1L∞

1
. ∥φ∥r−θL1∥f∥r−θL1 ,

(10.2)

and the bilinear complex interpolation covers the intermediate cases.
It remains to prove (10.1). We rewrite the kernel of Rφ

Rφg =

∫∫
h1(r)

h1(r′′)
χ(r, r′, r′′)φ(r′)h1(r

′)r′g(r′′)dr′′dr′, (10.3)

where χ(r) is defined by

χ(r, r′, r′′) =


1 (r′ < r′′ < r),

−1 (r < r′′ < r′),

0 (otherwise).

(10.4)

We decompose the double integral dyadically such that r ∼ 2j, r′′ ∼ 2k and r′ ∼ 2l,
and let

Aj = 2−θj∥Rφg∥L∞(r∼2j), Bj = 2(θ+1)j∥R∗
φf∥L∞(r∼2j),

φl = 2θl∥φ∥L1(r∼2l), gk = 2(−θ−1)k∥g∥L1(r∼2k), fk = 2θk∥f∥L1(r∼2k).
(10.5)

For Rφ, we have

Aj .
∑

j−1≤k≤l+1
l−1≤k≤j+1

2−m|j|−θj+m|k|+θk−m|l|−θlφlgk.
(10.6)

The sums over k are bounded for j − 1 ≤ k ≤ l + 1 and for l − 1 ≤ k ≤ j + 1
respectively by

2−m|j|−θj−m|l|−θlφl sup
k

gk ×

{
max(2(−m+θ)j, 1) max(2(m+θ)l, 1),

max(2(−m+θ)l, 1) max(2(m+θ)j, 1),
(10.7)

and since the exponential factors are bounded, after summation over l we get

∥Rφg∥rθL∞ .
∑

l

sup
k

φlgk, (10.8)
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as desired. For R∗
φ in (10.1), we have

Bj .
∑

k−1≤j≤l+1
l−1≤j≤k+1

2m|j|+θj−m|k|−θk−m|l|−θlφlfk.
(10.9)

Then the sums over k and l are bounded in both cases by

2m|j|+θj sup
k,l

φlfk min(2mj−θj, 1) min(2−mj−θj, 1), (10.10)

and hence ∥R∗
φf∥r−θ−1L∞ . supl,k φlgk, as desired.

Next we show the optimality. Let b ∈ Z, and choose any g which is piecewise
constant on each dyadic interval (2j, 2j+1), supp g ⊂ [2b,∞), and g ≥ 0. Then for
0 < r ≤ 2b we have

Rφg(r) = h(r)

∫ ∞

2b

∫ a

2b

h(s)−1φ(a)h(a)ag(s)dsda

& h(r)
∑
j≥b

j−1∑
k=b

2m|k|+θkgk2
−m|j|−θjφj & h(r)

∑
j≥b

gj−1φj,

(10.11)

where we denote gk = ∥g∥rθ−1L∞(r∼2k) and φj = ∥φ∥r−θL1(r∼2j). Choosing a test

function ψ ∈ C∞
0 (0,∞) satisfying ψ ≥ 0, supp ψ ⊂ (0, 2b) and (h | ψ) = 1, we

see that φj ∈ ℓp′

j (j > b) is necessary since we can choose arbitrary non-negative

gk ∈ ℓp
k(k > b). Similarly by choosing supp g ⊂ (0, 2b] and supp ψ ⊂ (2b,∞), we see

that φj ∈ ℓp′

j (j < b) is also necessary. ¤
10.2. Double endpoint Strichartz estimate. Lemma 5.1 holds for more general
radial potentials. We call∥∥∥∥r−1

∫ t

0

ei(t−s)Hf(s)ds

∥∥∥∥
L2

t,x

. ∥rf∥L2
t,x

(10.12)

the Kato estimate for the operator H, and

∥u∥L2
t (L∞

2 ) . ∥u(0)∥L2
x

+ ∥iut + Hu∥L2
t (L1

2). (10.13)

the double endpoint Strichartz estimate for H. Lemma 5.1 is a consequence of the
following.

Theorem 10.1. For any m > 0, the double endpoint Strichartz (10.13) holds for

radially symmetric u(t, x) = u(t, |x|) and H = ∆
(m)
2 = ∂2

r + r−1∂r − m2r−2.

Lemma 10.2. Suppose H0 and H = H0 + V are both self-adjoint on L2(R2) and
|x|2V (x) ∈ L∞(R2). Assume that the Kato estimate (10.12) holds for H, and that the
double endpoint Strichartz estimate (10.13) holds for H0. Then we have the double
endpoint Strichartz also for H. The same is true when we restrict all functions to
radially symmetric ones, if V is also symmetric.

Corollary 10.3. Let V = V (|x|) ∈ C1(R2\{0}) be a radially-symmetric function
with |x|2V ∈ L∞(R2), and suppose H = −∆ + V is self-adjoint on L2(R2). Let
f(t, x) = f(t, |x|) be radial. Then

(1) the Kato estimate (10.12) holds for H if and only if the double-endpoint
estimate (10.13) holds for H,
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(2) both estimates hold provided

inf
r>0

r2V (r) > 0, inf
r>0

−r2(rV (r))r > 0. (10.14)

Since our linearized operator Hs satisfies (10.14), the above implies Lemma 5.1.

Proof of Corollary 10.3. The first statement follows directly from Theorem 10.1 and
Lemma 10.2. For the second statement: the methods of [4], adapted to the 2-
dimensional radial setting (detailed in [12]), imply that conditions (10.14) yield
the resolvent estimate (10.15), hence the Kato estimate, and the double endpoint
estimate. ¤
Remark 1. While the double-endpoint estimate (10.13) always implies the Kato
estimate (10.12), the reverse implication does not hold in general. For example,
consider H = −∆ acting on 2D functions with zero angular average. The Kato
estimate in this case can be verified, for example, by using the methods of [4] to
establish the resolvent estimate

sup
λ̸=0

∥(H − λ)−1φ∥L2,−1
x

. ∥φ∥L2,1
x

, (10.15)

from which the Kato estimate follows by Plancherel in t (see [12] for details). On the
other hand, if the double-endpoint estimate were to hold for zero-angular-average
functions, so would the endpoint homogeneous estimate. Since the latter is known
to hold for radial functions (see Tao [20]), it would therefore hold for all 2D func-
tions, which is false (see Montgomery-Smith [16], also see [20]). Alternatively, a
constructive counter-example is given by placing delta functions of the same mass
but opposite sign at (1, 0) and (0, 1) in the plane.

Proof of Theorem 10.1. Following [15], we use the identity∫∫
s<t

F (s, t)dsdt = C

∫ ∞

0

dr

r

∫
R

da

r

∫ a−r

a−3r

ds

∫ a+3r

a+r

dtF (s, t),

for the decomposition, where C > 0 is some explicit positive constant. Define the
bilinear operators Ij for j ∈ Z by

Ij(f, g) :=

∫ 2j+1

2j

dr

r

∫
R

da

r

∫ a−r

a−3r

ds

∫ a+3r

a+r

dt
〈
ei(t−s)∆

(m)
2 f(s)

∣∣g(t)
〉

x

where f and g are radial (i.e. f(s) = f(|x|, s), etc.).
The desired estimate follows from∑

j∈Z

|Ij(f, g)| . ∥f∥L2
t L1

x
∥g∥L2

t L1
x
.

Using the 1/t decay for ∥eit∆
(m)
2 ∥L1→L∞ , we can easily bound the supremum of the

summand. To get summability, we need decay both faster and slower than 1/t. In
fact we have, for φ = φ(|x|) radial,

∥eit∆
(m)
2 φ∥L∞,µ

x
. |t|−1+µ∥φ∥L1,−µ

x
, −m ≤ µ ≤ 1/2. (10.16)

This follows easily from the explicit fundamental solution

(eit∆
(m)
2 φ)(r) =

cm

t

∫ ∞

0

ei(r2+ρ2)/4tJm

(rρ

2t

)
ϕ(ρ)ρdρ
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(cm a constant) in terms of the Bessel function Jm of the first kind, for which

sup
s>0

sµJm(s) < ∞, −m ≤ µ ≤ 1/2.

Next, when the decay is slower than 1/t, namely if we choose µ > 0 in (10.16),
then we get a non-endpoint Strichartz estimate using the Hardy-Littlewood-Sobolev
inequality in time:

∥
∫

R
e−is∆

(m)
2 f(s)ds∥L2

x
. ∥f∥

Lp′
t L1,−α

x
, (10.17)

for 0 < α ≤ 1/2 and 1/p = 1/2 − α/2.
Now the rest of the proof follows along the lines of Keel-Tao [14]. We will prove

that

|Ij(f, g)| . 2j(α+β)/2∥f∥L2
t L1,−α

x
∥g∥L2

t L1,−β
x

, (10.18)

for

−m ≤ α = β < 0 (10.19)

and for

0 < α, β ≤ 1/2. (10.20)

For the first exponents (10.19), we use the decay estimate (10.16) and the L∞,α −
L1,−α duality at each (s, t). Then we get

|Ij(f, g)| .
∫ 2j+1

2j

dr

r

∫
R

da

r

∫ a−r

a−3r

ds

∫ a+3r

a+r

dt
∥f(s)∥L1,−α

x
∥g(t)∥L1,−α

x

|t − s|1−α

.
∫ 2j+1

2j

dr

r

∫
R

da

r
2jα∥f∥L2

t (a−3r,a−r;L1,−α
x )∥g∥L2

t (a+r,a+3r;L1,−α
x )

.
∫ 2j+1

2j

dr

r
2jα 1

r
∥f∥L2

a,t(−3r<t−a<−r;L1,−α
x )∥g∥L2

a,t(r<t−a<3r;L1,−α
x )

. 2jα∥f∥L2
t L1,−α

x
∥g∥L2

t L1,−α
x

,

where we used Hölder for s, t, a.
For the second exponents (10.20), we use the non-endpoint Strichartz (10.17) for

both integrals in s and t, after applying the Schwartz inequality in x. Then we get

|Ij(f, g)| .
∫ 2j+1

2j

dr

r

∫
R

da

r
∥f∥

Lp′
t (a−3r,a−r;L1,−β

x )
∥g∥

Lq′
t (a+r,a+3r;L1,−α

x )

.
∫ 2j+1

2j

dr

r

∫
R

da

r
2j(α+β)/2∥f∥L2

t (a−3r,a−r;L1,−β
x )∥g∥L2

t (a+r,a+3r;L1,−α
x ),

and the rest is the same as above, where 1/p′ = 1/2 + α/2 and 1/q′ = 1/2 + β/2.
Thus we get (10.18) both for (10.19) and (10.20). By bilinear complex interpolation
(cf. [3]), we can extend the region (α, β) to the convex hull:

α >
m

m + 1
2

(
β − 1

2

)
, β >

m

m + 1
2

(
α − 1

2

)
, α, β <

1

2
. (10.21)
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The only property we need is that this set includes a neighborhood of (0, 0), where
we are looking for the summability.

Now we use bilinear interpolation (see [3, Exercise 3.13.5(b)] and [17])

T : Xi × Xj → Yi+j (i, j, i + j ∈ {0, 1})
=⇒ T : Xθ1,r1 × Xθ2,r2 → Yθ1+θ2,r0 1/r0 = 1/r1 + 1/r2,

where Xθ,r := (X0, X1)θ,r denotes the real interpolation space.
The above bound (10.18) can be written as

∥I(f, g)∥
ℓ
−(α+β)/2
∞

. ∥f∥L2
t L1,−α

x
∥g∥L2

t L1,−β
x

,

where ℓα
p denotes the weighted space over Z:

∥a∥ℓα
p

:= ∥2jαaj∥ℓp
j (Z).

Hence the bilinear interpolation implies that

∥I(f, g)∥
ℓ
−(α+β)/2
1

. ∥f∥L2
t L1,−α

2
∥g∥L2

t L1,−β
2

, (10.22)

for all (α, β) in (10.21), where

∥φ∥q
Lp,s

q
:=

∑
k∈Z

∥2ksφ∥q
Lp(|x|∼2k)

,

and we used the interpolation property of weighted spaces (cf. [3]):

(ℓα
∞, ℓβ

∞)θ,q = ℓ(1−θ)α+θβ
q , α ̸= β,

(Lp,α, Lp,β)θ,q = Lp,(1−θ)α+θβ
q , α ̸= β.

By choosing α = β = 0 in (10.22), we get the desired result. ¤
Proof of Lemma 10.2. By time translation, we can replace the interval of integration
in (10.12) and (10.13) by (−∞, t). Then by taking the dual, we can also replace
it by (t,∞). Adding those two, we can replace it by R. Then the standard TT ∗

argument implies that

∥eiHtφ∥L2
t (L2,−1) . ∥φ∥L2 , ∥eiH0tφ∥L2

t (L∞
2 ) . ∥φ∥L2 .

Now let

u =

∫ t

−∞
ei(t−s)Hf(s)ds.

Then the Duhamel formula for the equation

iut + H0u = f − V u

implies that

u =

∫ t

−∞
ei(t−s)H0(f − V u)(s)ds.

Applying (10.12) for H and (10.13) for H0, and using L2,1 ⊂ L1
2, we get

∥u∥L2
t (L∞

2 ) . ∥f − V u∥L2
t (L1

2)

. ∥f∥L2
t (L1

2) + ∥r2V ∥L∞
x
∥u∥L2

t (L2,−1) . ∥f∥L2
t (L2,1).

(10.23)

Then by duality we also get

∥u∥L2
t (L2,−1) . ∥f∥L2

t (L1
2).
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Feeding this back into (10.23), we get

∥u∥L2
t (L∞

2 ) . ∥f∥L2
t (L1

2).

The estimate on eiHtφ is simpler, or can be derived from the above by the TT ∗

argument. ¤

Appendix A. Landau-Lifshitz maps from S2

The same stability problem on S2, instead of R2, is much easier in the dissipative
case, because the eigenfunctions get additional decay from the curved metric on S2.
Indeed we have convergence for all m ≥ 1:

Theorem A.1. Let m ≥ 2, a ∈ C and Re a > 0. Then there exists δ > 0 such that
for any u⃗(0, x) ∈ Σm with E(u⃗(0)) ≤ 4mπ + δ2, we have a unique global solution
u⃗ ∈ C([0,∞); Σm) satisfying ∇u⃗ ∈ L2

t,loc([0,∞); L∞
x ). Moreover, for some µ∞ ∈ C

we have

∥u⃗(t) − emθRh⃗[µ∞]∥L∞
x

+ E(u⃗(t) − emθRh⃗[µ∞]) → 0 (t → ∞). (A.1)

Our proof does not give a uniform bound on δ if m = 1, but we have

Theorem A.2. Let m = 1, a ∈ C, Re a > 0 and µ0 ∈ C. Then there exists δ > 0

such that for any u⃗(0, x) ∈ Σ1 with E(u⃗(0) − h⃗[µ0]) ≤ δ2, we have a unique global
solution u⃗ ∈ C([0,∞); Σ1) satisfying ∇u⃗ ∈ L2

t,loc([0,∞); L∞
x ). Moreover, for some

µ∞ ∈ C we have

∥u⃗(t) − emθRh⃗[µ∞]∥L∞
x

+ E(u⃗(t) − emθRh⃗[µ∞]) → 0 (t → ∞). (A.2)

The proof is essentially a small subset of that in the R2 case, so we just indicate
necessary modifications.

Outline of Proof. By the stereographic projection, we can translate the problem to
R2 with the metric g(x)dx2, where g(x) = (1+ r2/4)−2. The harmonic maps are the
same, while the evolution equation is changed to

qt = iSq − aLv⃗g
−1L∗

v⃗q, S =

∫ r

∞
g−1(q +

m

r
ν) ◦ iaL∗

v⃗qdr. (A.3)

In this setting we can use the “standard” orthogonality to decide µ:

0 = (z | ghs
1), (A.4)

since gh1 ∈ ⟨r⟩−1L1. The energy identity

∂t∥q∥2
L2

x
= −2a1(g

−1L∗
v⃗q | L∗

v⃗q) (A.5)

implies the a priori bound on q:

∥q∥L∞
t L2

x
+ ∥g−1/2L∗

v⃗q∥L2
t L2

x
. ∥q(0)∥L2

x
∼ δ. (A.6)

Since g−1/2 & r, we get (by using q = Rs∗
φ Ls∗q as on R2),

∥q∥L2
x

. ∥rL∗
v⃗q∥L2

x
. ∥g−1/2L∗

v⃗q∥L2
x
∈ L2

t . (A.7)

Then by the orthogonality (A.4) we have z = Rs
ϕs

Lsz with

ϕs := s2g(rs)h1/(ghs
1 | hs

1), (A.8)
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and so

∥z/r∥L2
x

. ∥Lsz∥L2
x
∥ϕs∥L1

2
. (A.9)

Since ∫ ∞

0

g(rs) min(r, 1/r)−mrdr ∼

{
min(1, s−2) (m > 2)

min(s−1, s−2) (m = 1)
, (A.10)

we have

∥ϕs∥L1
2
∼

{
1 (m ≥ 2)

max(s−1, 1) (m = 1)
. (A.11)

Anyway, if δ is small enough (depending on s), we get by the same argument as on
R2,

∥z∥X . ∥q∥L2
x
∈ L2

t ∩ L∞
t . (A.12)

Differentiating the orthogonality, we get

µ̇(hs
1 | ghs

1) = −(MaL∗
v⃗q | hs

1) − (gz | (
µ̇1

m
r∂r + iµ̇2h

s
3)h

s
1)

= −((Mr +
mv̌3

r
M)aq | hs

1)

− (gz | { µ̇1

m
(r∂r + m) + iµ̇2(h

s
3 − 1)}hs

1),

(A.13)

where on the second equality we used that Lshs
1 = 0 and (gz | hs

1) = 0. Using that

|(r∂r + m)h1| + |(h3 − 1)h1| . min(rm−1, r−3m−1) . ⟨r⟩−4, (A.14)

we can bound the last term in (A.13) by

|µ̇|∥z∥L∞
x

min(s2, 1), (A.15)

which is much smaller than the term on the left. The second last term in (A.13) is
bounded at each t by

∥q∥2
L2

x
∥hs

1∥L∞
x

. ∥q∥2
L2

x
. (A.16)

If m > 1, we can improve this for s < 1 as follows. By the same argument as on R2,
we have

∥q∥L∞
2,x

. ∥L∗
v⃗q∥L2

x
. ∥g−1/2L∗

v⃗q∥L2
x
, (A.17)

where we need m > 1 for the boundedness of Rs
ϕs

: r2L1
2 → rL∞

2 and Rs∗
φ : rL1

2 → L∞
2 .

Then we can replace the above estimate in the region r < 1 by

∥q∥L∞
2 ∩L2

x
∥hs

1∥L1
∞+L∞

x
. ∥q∥2

L2
x
min(s2, 1). (A.18)

Thus we obtain

∥µ̇∥L1
t

.
{

δ2 (m ≥ 2)

C(s)δ2 (m = 1)
, (A.19)

and hence if δ > 0 is small enough, we get the desired convergence as on R2. ¤
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Remark 2. It is a natural question whether one can prove a weaker asymptotic
stability as in Theorem A.2 also on R2. It is impossible in the energy space, at least
in the heat flow case (a > 0), because of the presence of blow-up solutions arbitrarily
close to the ground state, together with the scaling invariance of the energy space.
It is however quite likely that the stability holds for sufficiently localized initial
perturbation. This requires weighted estimates on the linearized evolution, which
will be pursued in a forthcoming paper.
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