20,122 research outputs found

    Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice

    Full text link
    We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the parameter regime where the bosons are in a superfluid ground state, integrate them out, and obtain an effective action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their possible broken-symmetry ground states at low temperatures and weak interactions.Comment: 8 pages, 8 figs v

    Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling

    Full text link
    We present the numerical solution of the renormalization group (RG) equations derived in Ref. [1], for the problem of superconductivity in the presence of both electron-electron and electron-phonon coupling at zero temperature. We study the instability of a Fermi liquid to a superconductor and the RG flow of the couplings in presence of retardation effects and the crossover from weak to strong coupling. We show that our numerical results provide an ansatz for the analytic solution of the problem in the asymptotic limits of weak and strong coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron Correlations and Materials Properties, in Kos, Greece, July 5-9, 200

    Analyses of composite structures

    Get PDF
    Stiffness and strength analyses on composite cross-ply and helical wound cylinders and flat laminate structure

    Optical probes of the quantum vacuum: The photon polarization tensor in external fields

    Full text link
    The photon polarization tensor is the central building block of an effective theory description of photon propagation in the quantum vacuum. It accounts for the vacuum fluctuations of the underlying theory, and in the presence of external electromagnetic fields, gives rise to such striking phenomena as vacuum birefringence and dichroism. Standard approximations of the polarization tensor are often restricted to on-the-light-cone dynamics in homogeneous electromagnetic fields, and are limited to certain momentum regimes only. We devise two different strategies to go beyond these limitations: First, we aim at obtaining novel analytical insights into the photon polarization tensor for homogeneous fields, while retaining its full momentum dependence. Second, we employ wordline numerical methods to surpass the constant-field limit.Comment: 13 pages, 4 figures; typo in Eq. (5) corrected (matches journal version

    Weak dipole moment of τ\tau in e+e−e^+e^- collisions with longitudinally polarized electrons

    Get PDF
    It is pointed out that certain CP-odd momentum correlations in the production and subsequent decay of tau pairs in e+e−e^+e^- collisions get enhanced when the e−e^- is longitudinally polarized. Analytic expressions for these correlations are obtained for the single-pion decay mode of τ\tau when τ+τ−\tau^+\tau^- have a ``weak" dipole form factor (WDFF) coupling to ZZ . For e+e−e^+e^- collisions at the ZZ peak, a sensitivity of about 1-5×10−17\times 10^{-17}\mbox{ee cm} for the τ\tau WDFF can be reached using a {\em single} τ+τ−\tau^+\tau^- decay channel, with 106 Z10^6\, Z's likely to be available at the SLC at Stanford with e−e^- polarization of 62\%-75\%.Comment: 9 pages, Latex, PRL-TH-93/17 (Revised

    Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit

    Full text link
    We present a systematic investigation of the magnetoreflectance of highly oriented pyrolytic graphite in magnetic field B up to 18 T . From these measurements, we report the determination of lifetimes tau associated with the lowest Landau levels in the quantum limit. We find a linear field dependence for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent with the hypothesis of a three-dimensional (3D) to 1D crossover in an anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the origin of the anomalous linear in-plane magnetoresistance observed both in bulk graphite and recently in mesoscopic graphite samples
    • …
    corecore