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ABSTRACT

The stiffness and strength analyses of composite materials pre-
viously presented have been reviewed and extended to cross-ply and
helical-wound cylinders, as well as flat laminates. Consideration has been
given to the composite behavior after initial yielding, including the influence
of filament crossovers in helical-wound cylinders. In doing so, a modified
""netting analysis' has been used in conjunction with the continuum analysis

to predict both initial yielding and post-yielding behavior.

Cylinders were assumed to be subjected to various loading condi-
tions, including axial tension and compression, torsion, and internal pres-
sure. Theoretical results were then compared with experimental data

obtained using glass-epoxy composites.

Investigations have also been made of the relative contributions of
the constituent material properties to the gross behavior of a unidirectional
fiber-reinforced composite when subjected to various loading conditions.
Theoretical values obtained for the prediction of the stiffness and strength
of the composite as a function of constituent properties have been compared
with experimental data obtained using both glass-epoxy and boron-epoxy

systems,

Complete digital computer programs, developed in conjunction with
the strength analyses of flat laminates and laminated composite cylinders,

and the investigation of stress distributions in the fibers and matrix of a

composite subjected to either longitudinal shear or transverse normal loading,

are presented in Appendices A, B, and C,
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SECTION 1

INTRODUCTION

This is a continuing attempt to develop a rational approach to the
design and utilization of composite materials in structural applications.

were concerned with the establishment of the independ-

Previous efforts

arameters from the macroscopic viewpnint.

The current effort is concerned with the development of guidelines
for the design of composite structures. The determination of the deforma-
tion and load-carrying capacity of filamentary structures is outlined.
Helical-wound tubes subjected to various loading conditions are examined in
detail. - The behavior of this structural element is expressed in terms of
various lamination parameters including the helical wrap angle, number of
layers, etc., and material parameters such as the properties of the con-
stituent materials, the cross-sectional shape of the filaments, etc. The
present theory of design of composite materials can be applied to the anal-

ysis and design of filamentary structures.

The weak link in a fiber-reinforced composite, as exhibited by the
initial yielding, is closely associated with the low strength levels attainable

41

in a direciion transverse to the fibers a n

e
transverse and shear properties of a unidirectional composite are analyzed,

the results providing information needed in improving composite materials.

“References are listed at the end of this report.



The present theory of design of composite materials is only prelimi-
nary. A number of refinements and appropriate experimental verification
remain to be explored. In particular, inelastic behavior both on the macro-
scopic and microscopic levels and the effect of filament crossovers are two
problems that deserve immediate attention. It is hoped that as the theory is
improved, the extent of empiricism can be substantially reduced in the de-

sign and utilization of composite materials.




SECTION 2

STRENGTH ANALYSIS

Anisotropic Yield Condition

The anisotropic yield condition, as reported in Reference 2, is
derjved from a generalization of the von Mises yield condi

ition §
. . 3
tropic materials,

ot isG-
It is assumed that the yield condition is a quadratic
function of the stress components

2 2 2
Zf(oij) = F(cry - oz) + G(oZ - ox) + H(cx - oy)

(1)

+2LT2 +2M1’2 +2N‘r2 =1
yz ZX xy

where F, G, H, L, M, N are material coefficients characteristic of the

state of anisotropy, and x, y, z, are the axes of the assumed orthotropic

material symmetry. Equation (1) reduces to the von Mises condition if

F -G=H = l/()k2
2
L =M=N= 1/2k

where k is a material parameter governing the yielding of isotropic
materials,

(7]



Since the composite material of present interest is in a form of rela-

tively thin plates, a state of plane stress is assumed, Equation (1) can be

reduced to:

2 2 2

g
Sy o1 % %y . %% o+ % (2)
X r X Y Y S -

The validity of this yield condition has been demonstrated in Reference 2,

using unidirectional glass-epoxy composites subjected to tensile loads.

For the strength analysis of a filamentary structure subjected to
combined loading, compressive properties must be known. Analogous to
the tensile strengths X and Y, the compressive strengths X' and Y' are
determined from 0- and 90-degree specimens subjected to uniaxial com-
pressive loads, respectively. Shear has no directional property, hence,
s = 8.

It is assumed that the anisotropic yield condition remains applicable
for materials with properties different in tension and compression. Itis
only necessary to use the principal strengths compatible with the prevailing
stress components, i.e., tensile strength for positive normal stress and
compressive strength for negative normal stress. This method of taking
into account different tensile and compressive properties follows those used

’

previously by other investigators. Equation (2) can now be written in
four forms corresponding to the four quadrants of the o, - Oy stress space,

The quadrant descriptions are as follows:

Axial Transverse Strength
Quadrant c_x g_z Strength Strength Ratio
1 positive positive X Y r, = X/Y
2 negative  positive X! Y r, = X! /Y
3 negative  negative X! Y! ry = X' /Y!
4 positive negative X Y! ry = X/y!




In terms of these definitions, the yield condition given by Equation (2)

becomes, in the order of the corresponding quadrant:
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-

stress components are positive or negative, corresponding to the appro-
priate quadrant in the stress space, Diagrammatically, the yield surface

can be represented in dimensionless form as shown in Figure 1,

For unidirectional glass-epoxy composites (vf = 70%),
r, = X/Y = 150/4 = 37.5
r, = X'/Y = 150/4 = 37.5
ry = X'/Y' = 150/20 = 1.5
Ty X/Y' = 150/20 = 7.5

This is represented by the solid curves in Figure 2.
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Figure 1. Comparative Yield Surfaces




Figure 2. Yield Surfaces for Glass-Epoxy Composites



The yield conditions of Equations (2) through (6) apply to an ortho-
tropic material in the directions of its material symmetry axes. For uni-
directional composites, the symmetry axes are parallel and perpendicular
to the fibers. If the fibers are oriented other than 0- or 90-degrees with
respect to the externally applied load, the applied stress components 0;,

i =1, 2, 6, must be transformed to the symmetry axes, i = x, y, s, before
the yield condition can be applied. 2 The usual transformation equation for

stress components, in matrix form, is

— — - — -
T 2 2
o m n Zmn (o]
X 1
o = n2 m2 -2mn 0, (7)
y
2 2
o -mn mn m -n (s
L s 6
-— e — . —

For uniaxial tension,

o, = positive, 0, = O, = 0 (8)
From Equation (7),
- m? - n’o = )
o, = m70,, O = |7 Og = -mno; (

Substituting these values into the appropriate yield condition, Equation (3),

one obtains:
m4 + (s2 - 1) rnz'n2 + rzl n4 = (X/(rl)2 (10)
which is identical with Equation (9) of Reference 2, where

= s = X/S, r

s = = r = X/Y




In the same manner, for uniaxial compression, the appropriate yield condi-

tion equation is
- 1) m®n + 2% - (x'/a,)" (11)
where s3 = 5 = X'/s, ry = r = Xr/y!

For pure shear, the yield condition corresponding to the second or
fourth quadrant will be needed, This can easily be derived by taking o, as
the only nonzero stress component, If r, and r, are different, which is
usually the case, the shear strength of a unidirectional composite will have

the dirccticn of th nlied chear, i e

1c applied chear osi-

n
vy S

tive or negative shear,

In summary, the initial yielding of a unidirectional composite, when
subjected to a complex state of stress, is governed by one of four possible
yield conditions. The appropriate condition to be used is determined by the
signs of the normal stress components, If the tensile and compressive
strengths are equal, the four conditions reduce to one equation; such is the

case in Equation (4) of Reference 3,

Compressive Propetties

In a previous study,z the principal strengths were limited to tensile
loading only. However, in the strength analysis of a structure subjected to
combined loading, the compressive properties of unidirectional composites

must also be known.

Compressive elastic moduli have been found to be approximately the
same as tensile moduli for glass -epoxy composites1 and boron-epoxy

6 . X
composites, = Compressive axial and transverse strengths, X' and Y!',



respectively, can be determined by the compressive loading of 0- and
90-degree specimens. Compression tests are known to be difficult to
perform, Test results often are affected by the geometric configuration

of the specimen. Competing modes of failure, i.e., buckling and strength,

are operative,

As an indication of the difficulty of direct measurement of the com-
pressive axial strength, X!, the numerical value of X' for glass-epoxy
composites has been reported as anywhere within a range of from 100 to
250 ksi, depending upon the test method used. In flexural tests of O-degree
specimens, which include a hoop-wound ring pin-loaded at diametrically
opposite points, most failures are of the tensile type. It appears reason-
able to assume that the compressive strength is at least equal to, if not
higher than, the tensile strength., In the present work, a value of 150 ksi
is assumed for both the tensile and compressive strengths of the glass-

epoxy composite, This value is undoubtedly conservative,

The compressive transverse strength Y'is comparatively simple to
determine because of its low numerical value, For glass-epoxy composites,
with vg = 70 percent, the value of Y' is between 16 and 24 ksi. The lower
values were obtained using specimens having rectangular cross sections;
the higher values, circumferentially wound tubes with over-wound (rein-
forced) ends. No gross buckling of the specimens was observed. Using the

experimentally determined principal strengths,

X' = 150 ksi
Y' = 20 ksi
S = 6 ksi

10




from which,

ry X'/Y' = 150/20 = 7.5

X'/S = 150/6 = 25

S3

one can determine, using Equation (11), the uniaxial compressive strength
0, as a function of fiber orientation. The resulting curve, together with
experimental data, is shown in Figure 3, The corresponding uniaxial stiff-
ness and tensile strength are also shown., The tensile and compressive
stiffnesses are practically identical when the strain is small, i.e,, in the

order of 0,1 percent,

Strength of Laminated Composites

For the sake of completeness, the strength analysis of laminated
composites described in Reference 2 is summarized here. Essentially, the
strength of materials approach is used, whereby the normals to the middle
surface remain undeformed during the stretching and bending of the compos -

ite plate, The total strain at any point in the plate is defined as

€, = €.o + zZx, (12)
1 1 1

It is further assumed that each constituent layer of the laminated composite

is mechanically and thermally anisotropic, i.e.,

0, = Cij (ej - ajT) (13)

where i, j =1, 2, and 6,

11
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Figure 3. Uniaxial Properties of Glass-Epoxy Composites




Equation (13), when integrated across the thickness of the laminated

composite, becomes:

N. =N, + N =4 ¢+ B..x, (14)
i i i i ] ij )
— T o
M. = M.+ M, = B,. €£+ D,. x (15)
i i i ij ] ij 7
where
h/2 1 d
v -/ d4
h/2
(NT, MY) =f C..a.T (1, 2)dz (17)
i -h/2 i)
(A.., B.,D.) = [P? c.. (1,2 2%) d (18)
i’ iy i o

Equations (14) and (15) are the basic constitutive equations for a laminated

anisotropic composite, taking into account equivalent thermal loadings.

The stress at any location across the thickness of the composite can

be expressed in the following manner. 2 Having established that

= — i - — O—‘
N A | B € (19)
— |
M B | D %

[y
w



then, by matrix inversion,

- 0—1 r' I — —_ ™
€ A:}: ' B::: N
_ |
|
—_— H::: I Da}:
M n
L. - L | J L —
— | —
[ A' | B N
N I R
o ! p —
x ! M
L J L | J L _
where
-1
A = A
B>.< - . A-lB
sk -1
H = BA
S -1
D =D-BA B *
e sk -] %k
A' = A -B
L |

D' =D

Substituting Equation (21) into (12)

€ = (A'. +2zB') N, t 4 zD') M.
i (1J 1J) J+(B1J+ 1J) ;

14

(20)

(21)

(22)

(23)



From Equation (13), the stress components for the kth layer are:

(k) _ ~(k) - oK)
o -Cij (EJ. Otj T) (24)

g"[( AL+ 2Bl Ny o+ (Bl + DY) M - a(;"T]
This is the most general expression for stresses as functions of stress
resultants, bending moments, and temperature., The same material coeffi-
cients A', B', and D', as reported in Reference 2, can be used for the thermal
stress analysis. This simple link between the isothermal and nonisothermal
analyses is ach1eved by treating thermal effects as equivalent mechanical
loads, e. g. N and M in Equation (17). Determining the level of external
load N1 and/or bendmg moment Mi' that will initiate failure in one or several
of the constituent layers is not a straightforward calculation. This is due to
the fact that the stress components o, (i =1, 2, 6) computed from Equation
(24) must be transformed into the x-y coordinates (i = x, y, s), which repre-
sent the material symmetry axes, before the signs of the stresses o, and ¢
whether positive or negative, can be determined. Only after the signs of o,
and 0 _are known, can the proper yield condition be selected. The actual
numei‘rmal method by which the maximum allowable loadings (N and/or M, )

are determined is outlined in detail in Appendix A,

A cylindrical shell is one of the basic structural shapes, When a
shell is subjected to homogeneous loading, e.g., uniaxial tension or com-
pression, internal or external hydrostatic pressure, or pure shear, the shell
maintains its shape, There is no change in curvature in either the circum-
ferential or the longitudinal direction. Because of this geometric constraint
imposed on cylindrical shells under homogeneous loadings, the induced stress
distribution can be represented by simpler relations than those just outlined,
By assuming no change in curvature (this can be represented by letting

= 0), the total strain is now equal to the in-plane strain, This is obtained
directly from Equation (12) by letting x = 0, Strain is therefore homogeneous

across the thickness of the shell, i.e., independent of z,

Pt
(3]



For cylindrical shells, the stress components for each layer are also
constant, as given by Equation (13). Using Equation (20), one can immediately

determine the in-plane, i.e., total strain caused by N.,

J
€= AN, (25) '
i ij )
The stress components are: -
|
(k) _ (k) N (k)
o O [ Ak Nk my T (26)

Being independent of z, this equation is considerably simpler than

Equation (24).

The strength analysis of cylindrical shells subjected to a few fre-
quently occurring loading conditions has also been programmed. The entire

program is outlined in detail in Appendix A,

Post-Yielding Behavior

For most fiber-reinforced composites presently available, initial
yielding is often dictated by the values of the transverse and shear strengths,
which are significantly lower than the axial strength. The initial yielding
introduces failures parallel to the fibers, These failures are audible during
the loading and become visible soon after the theoretically predicted yield

stress is attained.

The post-yielding behavior of cross-ply composites has been investi-
gated previously. 2 For a cross-ply composite subjected to a uniaxial tensile
load in the direction of the fibers of one of the constituent layers, additional
load can be supported after initial yielding until ultimate fiber failure is
induced. Thus, initial yielding does not necessarily determine the load-
carrying capacity of a laminated composite, After one or more layers have

yielded, the layers of the laminated composite which are still intact must be

16




investigated to ascertain whether or not they can support the prevailing

externally applied load.

However, in the case of an angle-ply composite under uniaxial tension,
the still intact layers cannot carry the existing load after initial yielding, For
this reason, there is no post-yielding load-carrying capabilil:y.2 Thus, under
uniaxial tension applied along one of the material symmetry axes of the com-
posite, cross-ply composites can carry additional load after the initial yield-

ing but angle-ply composites cannot,

A general theory for the analysis of the post-yielding behavior of a

laminated composite is diificuli tu foiulate because the material ig tran

n

formed from a continuum to a "discontinuum'' on the microscopic scale, A
theory will be proposed in this report, using some of the assumptions of the
conventional netting analysis. It is assumed that, after initial yielding, * the
unidirectional layers of a composite can carry tensile load only along the
fiber axis. To maintain static equilibrium, load transverse to the fibers
and distortional load must be carried by other internal agencies of the
composite. Such agencies may be derived from filament crossovers in the
case of a helical-wound structure, or from some end constraint typical of

shell -type structures, e.g., at the shell-and-head junction.

An internal agency is necessary for the transfer of the externally
applied loads to axial loads along the unidirectional fibers. Before initial
yielding, this internal agency is achieved by the binding matrix. The entire
composite is a continuum. After initial yielding, failure in the matrix and/or
at the fiber-matrix interface is introduced. Fibers are apparently still intact,

In the case of angle-ply composites under uniaxial loading, no internal agency

R
b3

A composite, after initial yielding occurs, is referred to as a ""degraded"
composite in Reference 2,

Pt
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is operative after the initial failure., Complete failure of the composite occurs
immediately after initial yielding. However, in the case of cross-ply
composites, an internal agency is not needed for transferring the external
load. Since some of the filaments are aligned parallel to the applied load,

they can continue to carry load until filament failure is reached.

Filament-wound structures often acquire filament crossovers during
winding with a helical pattern., This type of composite may be represented by
an angle-ply with filament crossovers. The geometric distribution and the
frequency of occurrence of filament crossovers for a given helical-wound tube
depend on the helical angle, the width of the roving, the diameter of the tube,
and other process parameters, which may include the characteristics of the
winding machine. In the present investigation, it is as sumed that the effect of

filament crossovers introduces two factors:

(1) As an internal agency, filament crossovers provide
additional load-carrying capacity to helical-wound
composites. This strengthening of angle-ply
composites is exhibited by higher effective transverse

and shear strengths, designated as Y and S, respectively.

(2) In contradiction to the strengthening effect above, filament
crossovers will be sources of stress concentrations,
since filaments can be subjected to direct abrasion among
themselves. Therefore, crossovers will tend to reduce

the axial strength X of the constituent layers.

Because of the existence of filament crossovers, it may be necessary
to treat helical-wound composites differently than angle-ply composites. It
may be possible for helical-wound composites to carry a higher load because
of the internal agency generated by the crossovers. The ultimate load that
the composite can carry will be governed by either the breakdown of the

internal agency which is needed to transfer external loads or filament failure.
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In conclusion, the post-yielding behavior of laminated composites is
dictated by the ability of the filaments which are still intact to sustain con-
tinued loading, This is accomplished in cross-ply composites when subjected
to uniaxial tension or internal pressure, for example, by having filaments
aligned parallel to the applied load, The post-yielding capability can also be
achieved by means of an internal agency in the composite, an example of
which is due to the filament crossovers which exist in woven fabric and
helical-wound structures. Angle-ply composites under uniaxial load do not
have a post-yielding capability because fibers are not aligned in the direction
of applied loads, nor is there an internal agency for load transfer, Assuming
that an internal agency is available in a composite such that the externally
applied luad, Ni’ i =1, 2, & canbetransferredto an axial load. Nf' in the
unidirectional layers, one can derive the relation between the axial stress;

Nf, of a unidirectional constituent layer and Ni as follows,

As shown in Figure 4a, the equilibrium of forces between the exter -~
nally applied load, Nl’ and the induced load, Nf, in the direction of the fibers

must satisfy the relation:

N, cos « N
f _ 1 (27)
A T Acos «a
or
2 2
N, = Nl/cos a = Nl/m (28)
In order to maintain equilibrium in the 2 -direction, an internal
force, NZl’ must be:
N21 o Nf sin « 29)
A sin o A

[y
(G=]



or

, 2 _ 2 2 2
Ny, = - Ng sin” & = -n'Ng = -an/rn (30)

Similarly, in Figure 4b, the equilibrium of forces between the

externally applied load, NZ’ and the induced load, Nf, results in the

condition:
2
N, = N,/n (31)
2 2 2
N, = m Ny =m Nz/n (32)

In the case of an externally applied shear force, N, the equilibrium

condition, as shown in Figure 4c must satisfy:

N N, sin « N, cos o N
e S . B (33)
A — Acos o — Asin« — Amn
or
N, = + Ng/mn (34)
The internally induced load, N66’ in this case is zero because
N N, cos « N, sin «
66 _ 6 6 =0 (35)

A Acosa  Asina
Equations (28), (31), and (34) show the contribution of each externally
applied load, Nl’ NZ’ and Né, to the axial stress along the unidirectional
layer with an orientation of & degrees from the 1-axis. The total axial

stress is, by superposition:

N, = —L ¢ 24 28 (36)
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Figure 4. Netting Analysis - Notation
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This equation gives the maximum load-carrying capacity of each uni-
directional constituent layer of a laminated composite. The ultimate load is
governed by the axial strength, X, of each unidirectional layer. It is, of course,
assumed that some internal agency of the laminated composite, by virtue of
the filament crossovers, is capable of supporting the internal forces le and
N, , at least up to the axial strength of the constituent layers.

The validity of this analysis is limited to the capability of the internal
agency to transfer the load. In particular, the filament crossovers in helical-
wound tubes will be examined as a specific internal agency. As stated pre-
viously, the effect of crossovers may be characterized by effective transverse
and shear strengths, Y and S, higher than those of unidirectional composites,
and by a reduction in the effective axial strength X, possibly caused by the
abrasive action between filaments at crossover points. Presently, the exact
change in magnitude of these effective strengths must be determined experi-
mentally, Future investigations may provide a basis for the theoretical pre-

diction of these values,

In the next two sections, detailed procedures for the determination of
the load-carrying capacity of cross-ply and helical-wound tubes will be out-
lined. The theoretical results will be compared with experimental data,

using E glass and epoxy as the constituent materials.
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Cross-Ply Composites

In this paragraph, the deformation and ultimate strength of
cross-ply composites are discussed. Theoretical predictions, using the
strength analysis program outlined in Appendix A, are made. A sample
problem is presented in detail and numerical results are tabulated. The

theoretical results are then compared with experimental data.

A cross-ply composite consists of two systems of unidirectional
constituent layers with adjacent layers oriented orihugonal to cach cther.
There are two lamination parameters: (1) the total number of layers, n, (each
layer may consist of one or more unidirectional plies of roving, all of which
must have the same fiber orientation), and (2) the cross-ply ratio, m, which
is defined as the ratio of the total thickness of all the layers oriented in one
direction to the total thickness of the layers in the orthogonal direction. For
laminated beams and plates, as reported in References 1 and 2, the cross-ply
ratio is computed using the layers with 0 degree orientation, as measured
from the reference coordinate system, as the first system of layers., In the
case of cylindrical préssure vessels, which will be discussed in this para-
graph, the cross-ply ratio is defined on the basis of the outermost layer as
being in the first system of layers. If the outermost layer is a hoop winding,
which is usually the case, then the cross-ply ratio is the ratio of the thick-

ness of all the hoop windings to that of the longitudinal windings.

The deformation and ultimate strength of cross-ply specimens

1,2,7 However,

subjected to uniaxial tension has been reported previously.
a computational error in the calculation of the stress at initial yielding (the

knee) has been discovered. The corrected theoretical result is as follows:

Cross-ply Ratio, m Initial Yielding, Nj/h, ksi
0,25 7.9
1,00 13.7
2.50 17.6
4,00 19.1

23



These results have been computed using the following material

properties, which are the same as those reported previously:

(1) _ &)
11 T a2

7.97 x lO6 psi

1]

1 2 6 .
C(IZ) = C(lz) 0.66 x 10 psi

1 2 6 .
C(ZZ) = C(“) 2.66 x 10 ps1

o) _ (2

6 .
66 = 66 = 1. 25 x 10~ psi

(1) _ ) _ 2 _ (2
Cig = C C C

26 = 16 = C6 =0

oé(ll) =a(22) = 3.5x% 10'6in. /in./°F

oD = ol = 114 10"%n, /in. /°F
(1) (2)
o = O =
6 6 0
T = -200°F (lamination temperature)
n = 3 (number of layers)
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In addition, the following strength data are used:

X = X' = 150 ksi
Y = 4 ksi
(38)
Y' = 20 ksi
S = 6 ksi

These material properties are requir.ed inputs in the strength analysis
prograimn outlined in Appendix A, The corrected theoretical results show
better agreement with the experimental results, as can be seen in Figure 5
(which is Figure 6 of Reference 2 and Figure 3 of Reference 7 with the cor-
rected initial yielding curve shown). The procedure for the determination of
the post yielding stiffness and the ultimate load is also outlined in these
references. Essentially, post-yield load carrying capability is possible for
cross-ply composites because the filaments in the direction of the applied
uniaxial load can carry the prevailing load. No internal agency for load
transfer is required in this case. The ultimate load is obtained when the
axial strength of the unidirectional layer is reached, i.e., when
X = 150 ksi,

It is important to recognize that the value of the axial strength X is
experimentally determined. It is not calculated from the fiber strength using
the rule-of ~mixtures equation, from which, for E glass, the computed axial
strength would be 400 x 2/3 = 266 ksi (filament strength times percent fila-

ment volume).

Cross-ply pressure vessels will now be examined. A typical vessel
is shown in Figure 6, The middle third of the vessel is the test section,
the ends being built up from special aluminum fittings. The basic design of
the vessel was developed at Aeronutronic under another research program.
The longitudinal layers were laid up by hand and the hoop layers wound by

machine, The rovings used were 20-end E glass preimpregnated with epoxy
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resin. Two-element strain gages were bonded to each pressure vessel with
the elements oriented in the hoop and longitudinal directions. Internal pres-
surization was achieved using hydraulic oil and a pumping arrangement ’
specifically designed for testing pressure vessels. Internal pressure and
strains were recorded by a multi-channel continuous recorder. Using the
material properties listed in Equations (37) and (38) in the program outlined
in Appendix A, the results given in Table I were obtained for cross-ply

ratios of 0.4, 1.0 and 4.0,

TABLE I

CROSS-PLY PRESSURE VESSELS — INTERNAL PRESSURE

b sk sk Nz/h
A Al A (hoop stress
Cross-ply | ! Ll 22 at initial | Yielding
Ratio (m) _—(10 " in/lb)—— yielding) Location
0.4 0.158 -0.025 0. 244 9.3 ksi Long.
1. 0.191 -0.024 0.191 12. 8 ksi Long.
4.0 0.273 -0.026 0. 147 14. 6 ksi Hoop

*The numerical values of the A* matrix are also given on pp 65, 67, and 69
of Reference 2 with the axes 1 and 2 interchanged. This change is necessary
because of the differences in the definitions of the cross-ply ratio cited
earlier in this section.
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Using a reference coordinate system with the l-axis in the
longitudinal direction and the 2-axis in the hoop direction, strains along

these axes can be computed using Equation (25):

Longitudinal Strain = 61 = A11 Nl + AlZNZ
L (39)
- 2 ES + %k
(241 A2 VN,
Hoop Strain = 62 = AIZNl + A22 NZ
(40)
= :lA: L AT N
V72 “a12 S R
where ZN1 = NZ. = PR is assumed and P = internal pressure, R = radius.

Strain after initial yielding is obtained by the usual neeting analysis,
which assumes that each unidirectional layer retains only its axial stiffness,
E“, the transverse stiffness and shear modulus being zero. The resulting

relations, as shown in Equation {9-5) of Reference 1, are:

Epyb C _l+m (41
PR 1 - 2

E. h

Al & 1ltm (42)
PR 2 m

where h represents the total wall thickness of the pressure vessel,

Taking E11 as 7.8 x 106 psi, which is representative of an E glass -
epoxy composite with a fiber volume of approximately 65 percent, the
longitudinal and hoop strains, before and after initial yielding (the knee),

are obtained from Equations (39) through (42). These are given in Table II.
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TABLE II

LONGITUDINAL AND HOOP STRAINS OF CROSS-PLY VESSELS

Before Yielding After Yielding
Cross-ply
Ratio
(m) E“h ¢ Ellh ¢ Ellh ¢ Ellh €
PR 1 PR 2 PR 1 PR 2
0.4 0.42 1.81 0.70 3.50
0.55 1.40 1.00 2.00
0.86 1.05 2.50 1. 25

The burst pressure of the cross-ply vessels may be predicted as
follows: First, the axial stress in the unidirectional composite at the initial
yielding must be determined. Assuming that the outermost layer of all
vessels is in the hoop direction (along the 2-axis), the stress components

that represent the normal stress along the fibers are:

(1) Hoop layers (odd layers) : szl) or O‘ZH)

(2) Longitudinal layers (even layers) : 0(12) or O(IL)

where the superscripts designate the layers, and the subscripts the direction
of the normal stresses. These stresses can be computed from Equation (26).
1 = N
since the computed yield stress for each constituent layer may be different.

In the present case, 2N N2 being equal to the lowest yield stress,

As a sample problem, the case of m = 0.4 will now be outlined. The
lowest initial yield stress for this case is N2 = 9.3 ksi (from Table I). The
yielding occurs in the longitudinal layer. The yield stress of the hoop layer
would be N2 = 23.3 ksi if the longitudinal layer could sustain a load equal to
or higher than this value. The axial stresses in the longitudinal and hoop

layers can be calculated from the stress coefficients, which are obtained
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directly from the programoutlined in Appendix A (or from page 65 of
Reference 2 provided subscripts 1 and 2 are interchanged). Substituting

N2 = 9.3 ksi and Nl = NZ/Z = 4.65 ksi, one can compute the axial

stresses:
o) = _0.095 (4.65) + 1.92(9.3) - 0.0255 (200)
= 12,30 ksi (43)
°(1L) = 1.239 (4.65) - 0.0381 (9.3) - 0.0062 (200)

4,17 ksi (44)

For cross-plv composites, it is assumed that, after initial vielding,
a complete uncoupling of constituent layers of the laminated composite is
induced. Each layer will operate independently. This complete uncoupling
has been reported in Reference 2 and appears reasonable for cross-ply com-
posites in general because of the lack of an internal agency to bind or lock
the laminates together. From Equations (43) and (44), each layer is axially
stressed either to 12.30 or 4. 17 ksi. Fiber failure will be induced if the
axial stress reaches 150 ksi, which is the experimentally determined axial
strength. Thus, the first layer (the odd or hoop layers) can sustain an

additional axial stress of:

NEH) = 150 - 12 = 138 ksi (45)
and the second layer:

N - 10 - 4 = 146 kei (46)
In a completely uncoupled laminate,

(H) _ ° (L) _ °
Ny = Ej € Ny = E| €

11 f2° 11 (47)

(73]
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Substituting these conditions into Equations (41) and (42) and solving
for the additional hoop stress, NZ’ that the pressure vessel can sustain be-

yond the initial yielding:

(H) _ - m €, - _m (H
Ny’ = PR = y=—E; S, h = 7= N;"h (48)
(L) _ = 2 € ph o= 2 (L)
Ny’ = PR = 5= E, € h = ;5= N""h (49)

Using the values of Equations (45) and (46) and m = 0.4,

N(ZH)/h - 0.286x 138 = 39.4 ksi (50)
N(ZL)/h = 1.43 x 146 = 209 ksi (51)

Thus, the burst strength is
N(ZH)/h = 39.4 + 9.3 = 48.7 ksi (52)

and the fiber failure is induced in the hoop layers,.

Similar calculations for other cross-ply ratios have also been com-

puted and the results listed in Table III.
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TABLE III

CROSS-PLY PRESSURE VESSELS

Cross-ply Initial Ultimate
Ratio %ﬁlc};n)g S(t;}er;}glt)h Failure
(m) 2 2 Location
0.4 9.3 48.7 Hoop
i.0 12.8 64, 5 Hoop
4.0 14. 6 56.8 Long.

The theoretical results listed in Tables II and III will now be compared
with experimental data obtained for cross-ply pressure vessels. During
pressurization, both hoop and longitudinal strains were recorded by a con-
tinuous strain recorder, along with the internal pressure., In the neighbor-
hood of the predicted initial yielding, a cracking noise could be heard, this
being attributed to a failure either in the matrix or at the fiber-matrix
interface. Upon further pressurization, the recorded strains followed a
secondary slope which agreed well with the theoretical prediction based on
netting analysis. The observed burst pressures came within 20 percent of
those predicted in Table III. Typical results of theory-versus-experiment
for pressure vessels with cross-ply ratios of 0.4, 1.0, and 4.0 are shown
in Figures 7, 8, and 9. In each of these figures, the number of layers
equals two and three. According to the theory, there should be no differences
between the two cases for pressure vessels because change of curvature does
not occur. The stress in each layer does not vary across its thickness
(radial direction). The experimental data, which are shown as dots, agree
well with the theoretical predictions, not only at the burst pressure but also
in predicting initial yielding and the primary and secondary slopes (the slopes
before and after yielding). As stated in Reference 2, the conventional netting
analysis is less exact than the present theory. The pressure-versus-strain
relations are linear rather than bilinear in a netting analysis. Also, the
ultimate burst pressure is computed using some value of glass strength cor-

rected by the fiber volume ratio. For the glass used in the present

(7]
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experiments, the strength is approximately 400 ksi. Using a volume ratio

of 67 percent glass, the strength in the direction of the fibers would be
approximately 270 ksi, which is considerably higher than the experimentally
determined strength of 150 ksi. In fact, the factor between the theoretically
predicted strength using a linear correction factor of the fiber volume and
those actually measured is 270/150 = 1.8, Itis, therefore, important to
emphasize that the 150 ksi axial strength is a mote realistic value, not only
under unidirectional loading but also for the design of filament-wound compo-

sites subjected to biaxial loading.

For glass-epoxy systems, the initial yielding occurs at approximately
20 percent of the nltimate burst pressure. The exact level of the initial
yielding can be predicted accurately tor the preseni sysicii and the present
theory is equally applicable to other fiber-reinforced composites. Depending
upon the relative values of the transverse strength and the axial strength, the
level of the initial yielding will vary. In fact, an optimum composite material
may very well be one in which the initial yielding, signifying failure of the
matrix and/or the interface, coincides with the ultimate burst pressure, which
in the case of cross-ply pressure vessels signifies fiber failure. Optimization
can also be achieved such that both the longitudinal and hoop windings fail
simultaneously. Using a netting analysis, the latter condition is satisfied if
the cross-ply ratio is 2. According to the present theory, this ratio is
dependent upon the basic properties of the constituent layers. Such proper-

ties include the elastic moduli and the axial, transverse, and shear strengths.

In Figure 10 are shown typical failures of cross-ply pressure vessels.
In the upper vessel, a failure in the longitudinal layer was apparently initiated
first. This vessel had a cross-ply ratio of 4. In the lower pressure vessel,
hoop failure occurred first, This will be the case for cross-ply ratios of

both 0.4 and 1.0.
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Figure 10. Typical Pressure Vessel Failures
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Helical-Wound Tubes

The deformation and strength of helical-wound tubes subjected to
homogeneous loadings will now be examined, Helical-wound tubes are of
special interest for two reasons: (1) this is a very common method of fab-
rication of filamentary structures, and (2) the occurrence of filament cross-
overs, which provide additional load-carrying capability after initial yielding
because of filament crossovers, can be anticipated. The types of loadings
that will be examined include uniaxial tension, uniaxial compression, pure
torsion, and internal pressure. The strength analysis outlined in the pre-
vious paragraph, using both the continuum and discoutinuum models, will
be utilized. Experimental results will also be presented to demonstrate the

degree of accuracy of the theoretical predictions of deformation and strength,

The filament-wound tubes fabricated during the present test program
include 1-1/2, 3, and 5-inch I. D. tubes with helical angles from a low value
of 27 degrees up to the maximum of 90 degrees. A few of the 1-1/2-inch
tubes are shown in Figure 11 with the helical angles marked on each tube.
The external load was applied to the tubes by means of end plugs, which were
adhesive-bonded into the tubes. The uniaxial tension tests were performed

as shown in Figure 12.

For uniaxial compression, the ends of the tubes were reinforced with
additional hoop winding (over-wound) to prevent local buckling. The uniaxial
compression tests were performed as shown in Figure 13. Torsion tests
were conducted on the torsion machine shown in Figure 14. Internal pres-
surization was obtained in a manner similar to that employed in the case of
cross-ply pressure vessels. For the 5-inch I. D, tubes, internal pressure

6nly was applied,

As previously stated, the effect of filament crossovers may be
characterized by higher values of transverse and shear strengths than for
unidirectional composites. The exact amount of the increase must be

determined experimentally at this time. Taking advantage of the strength
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Figure 11. Helical-Wound Tubes, Glass-Epoxy
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Figure 12. Uniaxial Tension Test
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Figure 13. Uniaxial Compression Test
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Figure 14. Torsion Test
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analysis program outlined in Appendix A, a parametric study of the contri-
bution of the principal strengths to the level of failure of the internal agency

can be conducted.

In Figures 15, 16, 17, and 18, the effective stiffnesses and various
strength criteria are given for helical angles between zero and 90 degrees.

Appropriate experimental points are also shown in these figures.

The effective stiffness of helical-wound tubes can be readily deter-
mined from the A" matrix in Equation (25). The numerical values of the
matrix can be obtained using the elastic moduli of Equation (37) as inputs to

the program outlined in Appendix A.

By assuming that the tensile and compressive moduli are equal, the
uniaxial elongation or compression can be determined from A>:1<l' The recip-
rocal of this value is plotted in Figures 15 and 16, which is equivalent to the
axial stiffness. In Figure 17, the effective shear stiffness, the reciprocal
OfA?;f,, is shown. In Figure 18, the effective circumferential stiffness is
shown as the ratio of the circumferential stress resultant to the measured
circumferential strain. This is obtained using the following relation, where
as before, the l-axis is in the longitudinal direction and the 2-axis is in the

circumferential or hoop direction:

E _ _1 sk b
hoop 1/(2 A, t AZZ) (53)

Strain rosettes were bonded to the helical-wound tubes with elements
oriented in the longitudinal and hoop directions and the tubes were subjected
to uniaxial or internal pressure loadings. For the torsion tube, the rosettes
were oriented at angles of 45 degrees from the longitudinal axis. The
effective stiffnesses of the tubes subjected to various loadings were com-
puted from the recorded strains and are shown in Figures 15 through 18.
They agree reasonably well with the theoretical predications of the program

outlined in Appendix A, which are shown as solid lines.
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The results of the strength analysis are also shown in these figures.
From the strength analysis, the various criteria for the determination of the

load-carrying capacity of the helical-wound tubes can be determined.

Initial yielding was determined by using the constituent layer mate-
rial constants given in Equations (37) and (38). The results of the computa-
tions are shown as solid lines and labeled "initial yielding" in Figures 15

through 18.

The strength criterion, assuming fiber failure, can be readily com-
puted from Equation (36) using an axial strength of X = 150 ksi. The
conditions are shown as solid

5 through 18.

results of this computa

The effect of crossovers can be accounted for by using effective
transverse and shear strengths higher than those of the unidirectional
composites. These higher strengths can be attributed to the additional rein-
forcement of the filament crossovers, similar to that occurring in woven
fabrics. The exact amount of this increase can be experimentally
determined. For the present, it requires a parametric study using the
strength analysis outlined in Appendix A, Various transverse and shear
strengths must be tried and the results that fit the experimental observa-
tions, as shown in Figures 15 through 18, can be considered appropriate.
Consistent values of the effective strengths for various loading conditions
must exist, since the effective strengths are treated as intrinsic character-
istics of the material. Based upon experimental observation, an effective
transverse strength of 12 ksi and an effective shear strength of 10 ksi appear
to give reasonable results. They are shown as solid lines in Figures 15
through 18 and labeled '"crossover strength'. In all cases, for intermediate
helical angles, the crossover strength criterion falls between the initial
yielding and the ultimate strength based upon fiber failure. In the actual
testing, initial yielding signifies the point where cracking in the matrix and/
or interface becomes audible and visible. Because of the crossovers,
complete uncoupling between the constituent layers is prevented until such

time as the crossovers can no longer act as an effective internal agency to
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perform the necessary load transfer. Beyond the crossover strength, the
composite material will cease to be a continuum. In the case of a pressure
vessel, excessive leakage through the wall is observed and the helical-

wound tube cannot sustain additional pressure.

In the case of uniaxial tensile loading, the crossover strength signi-
fies a complete departure from a continuum and continued loading will cause
the fiber axes to rotate (a tendency to reduce the helical angle) and the load
cannot be increased. The helical-wound tube behaves like an elastic-
perfectly plastic material, permitting a large increase in strain at a

constant stress.

The actual failure under uniaxial compressive loading occurred
between the initial yielding and the crossover strength. The failure mech-
anism involved some buckling of fibers on the microscopic scale. There
was no gross buckling. Away from one or two helical failure lines along
which this microscopic buckling had occurred, the helical-wound tube
remained essentially intact, There was no indication that crossover points
had failed. For this reason, the actual compressive strength was lower
than that predicted by the crossover strength. The failure mechanism
under pure torsion also involved local buckling. But areas of matrix and
interface failures were much more extensive than for compression.
Crossover failures apparently had occurred. The experimentally deter-

mined ultimate load agreed with the theoretical prediction.

In order to establish the validity of filament crossovers as an inter-
nal agency for load transfer, a comparison has been made between the
behavior of helical-wound tubes under tension and flat specimens cut from
panels made by slitting and flattening out helical-wound tubes before curing.
This comparison demonstrates that the increase in strength of helical-
wound composites is derived from the crossovers rather than the external
constraint provided by the end plugs bonded to a particular helical-wound
tube. The flat specimens have cut fibers, whereas in the helical-wound
tubes, the filaments are continuous and anchored at the end plugs.

Experimental results demonstrate that the ultimate load for both the flat
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specimens (data shown as squares in Figure 15) and the helical-wound tubes
(data shown as dots in Figure 15) are identical. This leads to the conclu-
sion that crossovers do, in fact, behave as an internal agency for load
transfer, even when the filaments are not continuous, as in the case of

the flat specimens. The circles in Figures 15 and 18 represent data ob-
tained by testing 3 inch I, D, helical-wound tubes. The distribution of cross-
overs for these tubes is different than for the 1-1/2 inch I. D, tubes, the
number of crossovers being fewer. The strength effect of the crossovers is
apparently lower, thus making the strength of the 3 inch I.D, tubes not
much different from that predicted by the initial yielding criteria. Of all
the specimens tested, as shown in Figures 15 through 18, fiber tensile

P T P SN I only in i
failures were induced only in the 5 inch I, D, pressure vessels, the data

shown as solid squares in Figure 19, In the case of uniaxial tensile and com -

pressive loadings, the failures did not involve breaks in the fibers. This
experimental result is in agreement with the theoretical prediction of the
netting analysis, in which a higher load is required (corresponding to 150
ksi fiber stress) for fiber failures to occur. In the case of torsion, the
failure mechanism involved fiber buckling and again the compressive

strength along the fiber axis was not reached.

Helical-wound tubes under tensile loading exhibited a linear stress-
strain relationship up to the initial yielding. This is shown in Figure 20,
where both the axial and hoop strains of a 3 inchI D, tube were recorded.
The effective stiffnesses, as measured by All and A12 were in excellent
agreement with the theoretical pred1ct1ons. The solid 11nes shown in this
diagram are the reciprocals of All and AlZ and represent the results ob-
tained from the computer program outlined in Appendix A, using the data
of Equations (37) and (38). A 1-1/2 inch I,D, helical-wound tube, with a
helical angle of 27 degrees, was also tested. The axial strain readings
indicated a considerable amount of time -dependent effect, This inelastic
behavior is very pronounced after initial yielding occurs. The stress-
strain relation obtained is shown in Figure 21. The theoretically pre-
dicted axial stiffness is shown as a solid line and the actual strain as re-
corded by a hand -operated strain recorder, is shown as a dotted line.

The degree of inelasticity depended upon the time required to make the
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strain recording at each load level. It is, of course, anticipated that the
actual strain reading will be different as the rate of loading and the time

required for the strain recording are changed.

The stress-strain relationships obtained for typical compression
tests also exhibited a degree of nonlinearity very similar to that shown

in Figure 21,

In torsion tests, inelastic behavior becomes apparent after initial
yielding, as shown in Figure 22, The initial slope agrees very well with

that predicted by the theory.

In Figure 23, a typical pressure versus sirain relation for a pres-
sure vessel subjected to internal pressure is shown., Again, the theoreti-
cally predicted slope, represented by the solid line, corresponds closely
to the experimental observation, The ultimate pressure was reached when
excessive leaking occurred. This pressure corresponds to the crossover
strength as predicted by using the effective transverse and shear strengths,
No fiber failure was induced in this case. This can be explained by the fact
that the internal agency could not support the pressure required to cause
fiber failure. In the case of the 5 inch I, D, pressure vessels (data shown
as solid squares in Figure 19), a very heavy rubber liner was installed
inside the pressure vessel, This liner prevented leakage through the wall
after the crossover strength was exceeded and internal pressure could be
increased to induce fiber failures. The pressure at which fiber failure oc-

curred agreed with that predicted by the simple netting analysis.

In conclusion, helical-wound tubes tested in the present program
had various patterns of filament crossovers, which provided post-yielding
load-carrying capability. The crossovers, however, did not have sufficient
strength to transfer external load necessary to cause fiber failures, The
only exceptions to this, apparently, were the 5 inch I,D, pressure vessels
subjected to internal pressurization. The implication is that the intrinsic
strength of the fibers is not fully developed in helical-wound tubes under

a general loading condition. Thus, higher filament strengths may not be
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necessary for many structural applications, particularly those involving

tensile and compressive loads and pure torsion.

Based upon available experimental data, one could very well con-
struct curves using one-half of the values predicted by the netting analysis.
A simple explanation would be that the crossovers induce stress concen-
trations of a factor of about two, and that the experimental data in the case
of tension, torsion, and internal pressure closely follow this prediction.
However, this curve-fitting technique is not reasonable to the extent that
none of these loadings induce fiber failures as assumed in the netting analy-
sis. The failure mechanisms are associated with the breakdown of the
internal agency and it is believed that the theory proposed here on the basis

of crossover strength is more directly applicable.




SECTION 3

LONGITUDINAL SHEAR LOADING

Introduction

As discussed in detail in previous investigations, 2,7 and utilized in
Section 2, a strength analysis of composite materials requires a knowledge
of the stiffness properties Ell' }:;22, and G of the unidireciivual compositc,z
as well as its strength properties X, Y, and S. In previous investigations,

these values were experimentally determined.

In this and the next section, methods will be presented for analyt-
ically predicting the values of EZZ’ G, Y, and S, based upon the constituent
material properties of the unidirectional composite, as well as geometrical
considerations such as filament shape, packing arrangement, and volume

percent.

The material properties G and S, the composite shear modulus,
and composite shear strength, respectively, can be evaluated by consider-

ing a longitudinal shear loading, as will be discussed in this section.

The material properties E,, and Y, composite transverse modulus
and composite transverse strength, respectively, are obtained from a

transverse normal loading, as discussed in Section 4.

The axial properties of a unidirectional composite, E11 and X, and
specific problems associated with their analytical prediction, are discussed

in Reference 8.
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Description of Problem

To obtain a meaningful solution for the distribution of stresses within
the filaments and matrix of a composite material, the problem must be
accurately formulated. That is, the actual physical behavior must be cor-

rectly represented on the micromechanical scale.

Because of the complex stress state to be solved for, a theory of
elasticity approach must necessarily be utilized. A strength of materials
solution is not applicable because realistic assumptions as to strain distribu-
tions cannot be formulated. Since it can be assumed that no variations of
stress in the direction of the unidirectional filaments occur when a longitu-
dinal shear loading is applied to the composite, the problem is two-

dimensional.

To treat the problem analytically, assumptions must be made as to
filament packing arrangement and geometry of the individual filaments.
The method of solution to be used is based upon the existence of certain
symmetry conditions. A rectangular filament packing array is assumed,
as shown in Figure 24. The individual filament cross-sections are assumed
to be symmetrical about each of the coordinate axes, x and y. Within this
restriction, the filaments can be of arbitrary shape, i.e., circular,

elliptical, diamond, square, rectangular, hexagonal, etc.

Having established the assumptions of rectangular packing and
symmetric filaments, the problem can be formulated exactly (within the
usual assumptions of the theory of linear elasticity). This is perhaps the

key point of the analysis to be presented.

Because of this assumed symmetry, a fundamental or repeating unit,
as indicated by the dashed lines of Figure 24, can be isolated and analyzed,
being typical of the entire composite. When the composite is subjected to
longitudinal shear loads applied at a distance from the element being
analyzed, in the directions indicated by the average values ?zx and?z

in Figure 25, a complex shear stress distribution will be induced. This is
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the result of the dissimilar material properties of the filaments and matrix
and also because of interactions between the filament being analyzed and

adjacent filaments.

/ 1_-Zy :
TRIX —
MA ey

x

4

Figure 25. First Quadrant of the Fundamental Region - Longitudinal Shear Loading

However, because of symmetry, each average longitudinal shear
stress T.x and sz, when applied separately, will cause a uniform axial
displacement of the boundary of the fundamental region on which it acts.
Thus, the problem can be formulated as a displacement boundary value prob-
lem, interactions between adjacent filaments being automatically and accu-

rately taken into account.

Method of Analysis

The problem of longitudinal shear loading is defined by a displace-

ment field of the form
u=v=20 w = w (%, V) (54)
For such a system the only nonvanishing stress components are:
dwW - W
Tox = G dx ' sz G Jy (55)

where G is the shear modulus of the material.
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The equilibrium equations in the x and y directions are identically

satisfied, equilibrium in the z direction requiring that

3%w 3w
G + =0 (56)
9x dy

Consider an infinite elastic body containing a rectangular array of
cylindrical elastic inclusions oriented parallel to the z axis (see Figure 24).
Because of the necessity of establishing certain symmetry conditions in the
solution, the individual inclusions must have two axes of symmetry, these
axes being oriented parallel to the x and y axes. Within this restriction, the

inclusions can be of arbitrary shape.

It will be assumed that the inclusions, which have a shear modulus

Gf, are perfectly bonded to the matrix, which has a shear modulus Gm

The spacings of the inclusions in the x and y directions are taken as
2a and 2b, respectively. The dimensions of the inclusions are arbitrary

within the physical limits imposed by these spacings.

The body is assumed to be loaded at infinity by uniform shear

stresses, ‘i_'zx and "Fz , each of arbitrary magnitude.

The stresses in the composite medium can be analyzed by isolating a
fundamental region in the x-y plane consisting of a rectangular element of
dimensions 2a by 2b (see Figure 24) containing an inclusion. The average
shear stresses ?zx and ?Z” acting on the sides of the rectangle will be chosen

as the arbitrary loading parameters.

Because of the assumed double periodicity of the inclusion geometry

and inclusion spacing, the displacement field must satisfy the requirement

w (x,y) = -w (-x, -y) | (57)
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It normally is desired to solve the shear problem for a given set of
shear loading conditions, i.e., specifying sz and ‘T'Zy, rather than for given
boundary displacement conditions. However, it is much simpler to solve the
problem when expressed in terms of displacements as, for example, in
Equations (55) and (56). Thus, the procedure will be to first solve the prob-
lem for a specified uniform displacement, Wl’ along the side x = a of the

fundamental region, the boundary condition on the other three straight sides

e

being, from symmetry conditions: -
Bw::l:
G IV =‘(O along vy = Oandy = b
(58)
w1 = 0 along x = O

Hav1ng solved this problem, defined as Problem 1, the average shear
stress T zx correspondlng to this specified displacement, Wl’ is determined
by first calculating T 7% at each node point on the boundary x = a and then

taking the average value.

Assuming that it was desired in the original problem to solve for the
case of a specified average shear loading ?zx’ along x = a, the values of
displacements Wl(i,j) and the stresses sz(i, j} and sz(i, j} at each node
point (i, j) in the array corresponding to this loading are obtained by multi-

plying the results above by the ratio

. T:x (59)

Tzx

Thus, a solution for the case of specified average shear loading
Tox along the boundary x = a and zero shear along the boundary y = b has
been obtained (Problem 1),
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This same procedure is then repeated to obtain a solution for the

‘case of a specified average shear loading ?ZY along the boundary y = b and

zero shear along the boundary x = a (defined as Problem 2), i.e., specify
a uniform displacement, w;, along the boundary y = b, and solve the

displacement boundary problem using the boundary conditions:

G 22 - g 4 = 0 .
357 ° along x = and x = a
(60)
w;: 0 along y = 0
After calculating an average shear stress ?:Y along y = b, all siress aud
displacement values calculated above are multiplied by the ratio
FZY
f, = - (61)
2 =
zy

to obtain the solution for the case of a specified average shear loading
TZ along the boundary y ='b and zero shear along the boundary x = a
(Problem 2).

In solving the two individual problems outlined, it is necessary to

establish continuity conditions at the interface between the inclusion and

the matrix., These conditions, which are identical in both problems, are:

(1) continuity of displacement across the interface

w (62)
(2) continuity of shear stress across the interface

dw ow
Gf 3n C'm 3n (63)
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where n is in a direction normal to the interface boundary and the subscripts

f and m represent filament and matrix, respectively.

The effective shear moduli of the composite material are determined

as follows:

x - direction .
:sz a 7:zx
c}x Wy (a, o)/a wlla, o) (64)
y - direction
T bT

zy

G = = zy
y = W, (0,B]/b =W, (o, b)

(65)

Having obtained a solution for each of the two problems outlined, i.e.,
T specified, T.. = 0 and T, specified, T, = 0, the solution of the general
zx zy zy zX

problem of combined shear loading is obtained by superposition.

Solution Technique

A relaxation method of solution of the two problems outlined in the
previous paragraph has been formulated using a finite difference
representation. The method of solution is presented in Appendix B, along
with a complete description of the digital computer program developed, a
computer program listing, and a sample problem. The program is written
in Fortran IV programming language for the Philco 2000 digital computer.
The program can, of course, be readily converted for use on other

computer systems.

Several unique numerical analysis techniques and computer pro-
gramming methods were developed during the course of this investigation.

These are discussed in Appendix B.
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Presentation of Results

The primary goal of the present investigation has been to develop a

‘method of determining the distribution of stresses in a composite and the

composite stiffness, rather than to make extensive parametric studies.

However, typical results obtained for several filament geometries and pack-

ing densities are shown in Figure 26. The computer solution calculates

stresses and displacements throughout the region, as indicated in the sample

problem of Appendix B. In Figure 26, only the effective composite shear

G, and the stress concentration factor, SCF, i.e., the ratio of

modulus,
the maximum induced shear stress to the applied stress, are shown. A
glass-epoxy system was assumed, using Gf =4.0 x 106 psi and

G_ =02 x 10° psi.

The results given for square fibers in a diamond packing were
obtained by a transformation of the coordinate axes through an angle of
45 degrees from the case of square fibers in a square array. It is inter-
esting that the diamond packing, for v¢{ = 70 percent, yields the highest
composite shear modulus (1.92 x 106 psi) without inducing a high stress
concentration (SCF = 2. 46).

In Figure 27 are shown typical results obtained for circular fibers
and various composite systems. The reinforcing factor, G/Gm, i.e.,
the ratio of the composite shear modulus to the shear modulus of the,
matrix, is plotted against the ratio of the shear moduli of the constituents,
Gf/'Gm, with percent fiber volume as a parameter. A few typical
combinations of constituent materials are indicated. As can be seen, the
composite shear modulus increases significantly as the filament packing

density is increased.
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Figure 26. Shear Modulus (G) and Stress Concentration Factor (SCF)
for Gloss-Epoxy Composites Subjected to an Applied Shear Stress
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Based upon available experimental data, the theoretical predictions
presented in Figure 27 are reasonably accurate. For example, for a

fiber volume of 70 percent, and an epoxy shear modulus of 0.2 x 106 psi,

the following values are obtained:

Composite Shear Modulus

Predicted Experimental
Glass-epoxy composite 1.1 x 106 psi 1.2 x 106 psi
Boron-epoxy composite 1.4 x 106 psi 1.5 x 106 psi

To show the specific influence of the matrix material on the com-
posite shear modulus, another plot is shown in Figure 28, in which a
particular fiber shear stiffness is assumed and held constant
(Gf = 24 x 106 psi was used, which is typical, for example, of boron
filaments). Composite shear modulus, G, is plotted against matrix shear
modulus, Gm, with percent fiber volume as a parameter. Various potential
matrix materials are indicated on the abscissa. The range of attainable

composite shear moduli for each matrix material is clearly shown.

The significance of these results to materials design is discussed

in greater detail in Section 5 of this report.
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SECTION 4

TRANSVERSE NORMAL LOADING

Introduction

The need for detailed investigations of the stresses developed in
individual fibers and the surrounding matrix of a unidirectional composite

material was discussed in the first two paragraphs of Section 3, longitudinal

shear loading heing cansidered.

A transverse normal loading will be analyzed in this section. The
basic principles of the formulation of the problem are essentially the same
as for a longitudinal shear loading condition. However, the details of the
formulation and the numerical solution required are considerably more
complex. This is primarily because of the fact that two dependent displace-
ment variables, u and v, occur, whereas for longitudinal shear loading,

only a single dependent variable, axial displacement w, exists.

The basic formulation of the problem follows that developed by
Aeronutronic consultant, Dr. H. B. Wilson, Jr., for the case of a doubly

9

periodic array of rigid inclusions in an elastic matrix.

As in Section 3, to treat the problem analytically, assumptions must

hAa »wanAd - 3 vy 7
oc made as toc filament naclki

t packing 1gement and the geometry of the indivi-
dual filaments. Because the method of solution to be used is based upon

the existence of certain symmetry conditions, a rectangular filament packing
array has been assumed, as shown in Figure 29. The individual filament
cross sections are assumed to be symmetrical about each of the coordinate

axes, x and y. Within this restriction, the filaments can be of arbitrary
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Figure 29. Composite Confainin? a Rectangular Array of Filaments Imbedded in an Elastic Matrix
and Subjected to Uniform Transverse Normal Stress Components at Infinity




shape, i.e., circular, elliptical, diamond, square, rectangular,
hexagonal, etc,

Having established the assumptions of rectangular packing and
symmetric filaments, the problem can be formulated exactly (within the
usual assumptions of the theory of linear plane elasticity). As in the

longitudinal shear problem, this is perhaps the key point of the method of
analysis,

The concepts of two-dimensional plane elasticity can be applied to
the problem of transverse loading, since no variations of stress will occur
in the direction of the unidirectional filaments. Either

stress or plane strain can be assumed.

Because of the assumed symmetry, a fundamental or repeating unit,
as indicated by the dashed lines of Figure 29, can be isolated and analyzed,
being typical of the entire composite. When the composite is subjected to
transverse normal loads applied at a distance from the element being
analyzed, as indicated by Ex and Ey in Figure 29, a complex state of stress
is induced in the composite. This is the result of the dissimilar material
properties of the filaments and matrix and also because of interactions
between the filament being analyzed and adjacent filaments, The stress dis-
tribution along the sides of the fundamental region will not be uniform,
although the average of the normal stresses along the sides must equal the

average applied stresses, Ex and Ey’ from equilibrium considerations.

However, because of symmetry, the originally rectangular funda-
mental region remains a rectangle when transverse normal loads are
applied, i.e., the normal component of displacement of each point on a
boundary of the fundamental region is identical. Thus, the problem can be
formulated in terms of displacements, interactions between adjacent fila-
ments, which induce the nonuniform stresses at the boundaries of the funda-

mental region, being automatically and correctly taken into account.
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Method of Analysis

The composite material is assumed to consist of a rectangular array

of unidirectionally oriented elastic inclusions, e.g., reinforcing filaments,

aa

in an infinite elastic matrix, as shown in Figure 29. The inclusions are
assumed to be perfectly bonded to the matrix and spaced a distance of 2a
apart in the x direction and 2b apart in the vy direction, By assuming a
regular packing arrangement, a fundamental or repeating unit can be
isolated, as indicated by the dashed lines in Figure 29. Because of the
necessity of establishing certain symmetry conditions in the solution, the
inclusions will be assumed to have two axes of symmetry, these axes being
oriented parallel to the x and y axes of the fundamental unit. Within this

restriction, the inclusions can be of arbitary shape.

The body is assumed to be loaded at infinity by uniform normal
stresses Ex and ¢ inthe x and y coordinate directions, respectively,
as shown in Figure 29. These stresses may each be of arbitrary magni-
tude in tension or compression, The influence of thermal stresses induced
by a uniform temperature change T in the composite material, e.g.,
residual stresses induced during cooling from the composite curing tem-

perature, has also been included.

Because of the double periodicity of the inclusion geometry and
inclusion spacing, only one quandrant of the fundamental region need be

considered, as indicated in Figure 30.

The problem can be treated as one of plane elasticity, either a con-

dition of plane stress or plane strain being assumed, as appropriate.

It is normally desired to solve the problem for a specified loading
configuration, i.e,, for given values of Ex and o , rather than for specified
boundary displacements. However, it is simpler to formulate the problem

in terms of displacements and subsequently evaluate stresses.
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In terms of displacements u and v in the x and y cordinate

directions, respectively, the equilibrium equations to be satisfied are:

X - direction
2 2 2
o)
G (A+1)—2-8‘1+A—Zau+§-?V =0 (66)
dx dy xoy
y - direction

2 2 2
3 u o7y vl -

M




where

The stress-displacement

where
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Xy

1-v
v plane stress

1 -2v plane strain

Shear Modulus = ZTrE+_V)

Modulus of Elasticity

Poisson's ratio

B(S—%+C§%)-F
B(C%-{--g—;)-F

d d
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3
G(g‘;- + g%)

PLANE STRESS

equations are of the form:

(68)
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Because of the assumed symmetry about each of the coordinate axes,
the original rectangular unit of Figure 30 will remain rectangular when
subjected to transverse loads, i.e., no shear stresses exist along the
rectangular boundaries of the element. This shear stress condition, along
with the specification of a uniform normal displacement of each side of the

rectangular unit, is adequate to define ilic reguircd boundary conditions.

In addition to the prescribed boundary conditions, stress and dis-
placement continuity conditions must be satisfied at the inclusion-matrix
interface. Defining n as the direction normal to the interface at any point
and 8 as the direction of the normal as measured from the positive x-axis

(see Figure 30), the continuity conditions are:

f ™m
Ve T Vm
(69)
(8 = 0
fg %m
Tne = Tne
f m

where the subscripts f and m represent filament and matrix, respectively,
o, the normal stress at the interface, and L the shear stress tangent to the

interface.

Although displacement boundary conditions are utilized in the solution,

it is normally desired to specify average normal stresses to be acting in a
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practical application. Thus, the problem must be solved in three steps and

these steps suitably combined to provide the desired solution, The first

step consists of assuming T = 0, i.e., zero temperature change, and solving

the boundary value problem defined by the following boundary conditions (see

Figure 30): .

Txy = 0 along all four rectangular boundaries
4
L]
u = 0 along x = 0 (points remain on the coordinate axis
because of symmetry)
u = 1 along/x = a (arbitrarily specified unit displacement) (70)

v = 0 along y = 0 (points remain on the coordinate axis

because of symmetry)

v = 0 alongy = b (specified displacement condition)

These conditions, along with the interface continuity equations (Equation 69),
are sufficient to define the problem. A finite difference numerical relaxation
technique has been developed to solve this problem and is presented in detail

in Appendix C.

The second step in the complete solution is to solve another boundary

value problem identical with the first except specifying

I
»

u =0 along x
(71)

!
o

v = 1 along y
Again, a solution is obtained, using the relaxation technique developed.
The third step consists of imposing the desired temperature change T,

specifying all the boundary displacements of Equation (70) to be zero, and

obtaining a relaxation solution,
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These three separate solutions are then suitably combined to obtain a
complete solution for the desired combination of imposed transverse loads
and temperature change. The method of combining solutions is shown

schematically in Figure 31,

In the process of combining solutions, the effective elastic modulus
and effective coefficient of thermal expansion of the composite material, in
each of the two coordinate directions, are also calculated. These steps are

also indicated in Figure 31.

The complete solution for a specified filament geometry, filament
packing arrangement, temperature change, and.loading condition thus

provides the [oliowing inforiation:

(1) Both u and v displacements at all node points throughout the
matrix and filament, including those on the interface.

(2) All normal and shear stress components in the coordinate
directions at each node point.

(3) The magnitudes and directions of the principal stresses at each
node point,

(4) An evaluation of the von Mises yield criteria at each node point.

(5) The effective elastic modulus of the composite in each coordinate
direction.

(6) The effective coefficient of thermal expansion of the composite in

each coordinate direction.

The details of the numerical solution established, using a finite

~

difference relaxation technique, are given in Appendix C along with a complete

description of the digital computer program developed.

Discussion of Results

A typical problem solution is presented in Appendix C, showing the
form in which results are obtained. As can be seen, a complete stress dis-

tribution is available, as well as the evaluation of a yield criterion., Since
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the primary purpose of the present investigation has been to develop a

method of solution rather than to make detailed parametric studies, only a

selected number of composite configurations have been numerically evaluated

to date, Now that a solution is available, it will be possible to make detailed

parametric studies of material behavior.

Two plots of typical behavior are presented, however, to show the
utility of the method of solution. Figure 32 is a plot of the transverse rein-
forcement obtained as a function of the stiffness ratio (Ef/Em) of the con-
stituent materials for various filament volume ratios ('Uf). Circular
filaments in a square array have been assumed. Stiffness ratios for three
typical composite systems are specifically indicated. As can be seen, the
composite transverse stittness (EZZ) is increased sigiificantly as the fila-
ment volume percent increases. As the composite filament packing becomes
more dense, i.e., as the filaments are moved closer together, interactions
between adjacent filaments become important, the present analysis taking
these interactions into account. The contribution of filament stiffness (Ef)
can be seen by comparing reinforcing factors at various filament volume
percents for the two familiar epoxy composite systems indicated, i.e.,
glass-epoxy and boron-epoxy. Particularly for the higher filament packing
densities, use of the higher modulus boron results in a considerably higher

composite transverse modulus.

To show the contribution of the matrix stiffness, Em, to composite
transverse stiffness, EZZ’ more directly, another plot is given in Figure 33.
Again circular filaments in a square array have been used and a filament
modulus of 60 x 10° psi (typical, for example, of boron) has been

assumed. As expected, the composite transverse stifiness, EZZ’ increascs

as either the matrix stiffness,Em. or the fiber volume, Ve is increased.

A detailed study of the influence of filament geometry and non-
square packing arrangements, an interpretation of the yield criterion as
it relates local stress states to the composite strength, and the establish-
ment of optimum configurations for specific applications will all be fruit-

ful areas of additional investigation, using the analysis developed.
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Figure 32. Composite Transverse Stiffness for Circular Fibers in a Square Array
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SECTION 5

CONCLUSIONS

In this report, a theoretical basis for the determination of the
deformation and load-carrying capacity of laminated and helical -wound
composites subjected to complex loadings has been outlined. With the aid
of the strength analysis program outlined in Appendix A, parametric studies
of the contribution of the intrinsic properiies iv the structural behavior of
filamentary structures can be conducted, The relative importance of each
of the mechanical properties, such as elastic moduli and principal strengths,
can be quantitatively determined. This information can be used in the selec-
tion and design of composite materials for the purpose of achieving an opti-

mum design for a given structural application.

Based on information available thus far, it appears that the elastic
deformation of both unidirectional and laminated composites can be predic-
ted with reasonable accuracy, i.e., within 20 percent, In the case of load-
carrying capacity, both cross-ply and angle-ply composites, subjected to
uniaxial or multiaxial loading, are also predictable within the same level of
accuracy as that of the elastic deformation, The ultimate load-carrying
capacity of helical-wound tubes requires further investigation, In this
report, an attempt has been made to assess the effect of filament cross-
overs on the load-carrying capacity of helical-wound iubes. A strength
criterion based on the ability of the crossovers to transfer the externally
applied load to a load parallel to the fibers provides a reasonable prediction
of the load-carrying capacity, This is achieved by assuming some increase

in the effective transverse and shear strengths and a reduction in the axial

87



strength, These adjustments to the principal strengths are taken to be inde-

pendent of the helical-angle and other lamination parameters.

Insofar as guidelines for materials design are concerned, several
specific points will be outlined in this section. The implications of the
present discussion may have an influence on the thinking associated with
determining desired properties of the constituent materials, as well as
establishing geometric shapes and arrangements leading to optimum compos-

ite materials design,

Stiffness Ratios

The ratio of the stiffnesses of the fiber and matrix constituents,
Ef/Em’ has a direct bearing on the composite material behavior. The
numerical value of this ratio is approximately 20 for glass-epoxy and 120 for
boron-epoxy. In the case of a uniaxial loading along the fibers of a unidirec-
tional composite, this stiffness ratio signifies the relative stress ratios be-
tween the fibers and the matrix. A higher ratio implies that a higher pro-
portion of the externally applied load is being carried by the fibers. Based
on the rule-of -mixtures relation, a linear relationship between the stiffnes-
ses of the constituent materials and the axial stiffness En exists, The
stiffness ratio of the constituents, however, does not make a linear contri-
bution to the transverse stiffness E‘22 and shear modulus G, as in the case
of axial stiffness. In the numerical results presented in Sections 3 and 4,
the contribution of the stiffness ratio to the composite elastic moduli levels
off after a certain value, As the stiffness ratio exceeds a value of approx-
imately 100, a further increase does not significantly affect the composite
elastic moduli., In fact, the composite moduli will remain finite even when
the stiffness ratio approaches infinity, which represents the case of rigid

fibers,

Since the elastic moduli of a unidirectional composite involve four
independent parameters, the stiffnesses of unidirectional and laminated
composites can be controlled by varying one or all of these moduli, Which

particular modulus parameter will produce the greatest change can be

88

o 2



determined using the information contained in this report, For example,
an increase in the fiber stiffness, say in changing from glass to boron, will

have the greatest effect on Ell' In this particular example, the axial stiff-

ness increases from 8 x 10~ to 40 x 10” psi, The boron filaments, however,

do not induce a significant increase in the transverse stiffness or shear
modulus. The increases in these moduli are nominal, e. g., E22 increases
from 2.6 x 106 to 4.0 x 106 psi and G increases from 1.2 x 100 to
1.6 x 106 psi. Thus, the increase caused by the substitution of boron for
glass filaments is significant only in the case of E“.
However, a higher matrix stiffness will induce a much greater
increase. For example, as shown in Figures 2? and 33, a boron-nickel
composite may have a shear modulus of 16 x 16° psi and a trancverse stiff-
ness of 40 x 10 even at a comparatively low fiber volume of 40 percent.

This is significantly higher than for the boron-epoxy system.

In conclusion, the ratio of the stiffnesses of the constituent mate -
rials will have differing influences on the gross elastic moduli. There is
no ''rule -of -thumb'' that can be established at this time to determine the
most effective way of achieving higher stiffness in a laminated composite.
This has to be determined for each individual case, and other considera -
tions such as strength, fiber volume and fiber cross-sectional shape must

all be taken into account,

The effect of the stiffness ratio Ef/Em on the principal strength
will now be investigated., The axial strength of a unidirectional composite
is dictated by the fiber strength, which can be expreséed in terms of the
average and the standard deviation of the fiber strength, o and s, respec-
tively, the fiber volume Vi and a factor B, which is a measure of the

. . . 8 . .
matrix effectiveness in ''shear transfer." The relation is:
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where GB is defined as the bundle strength and can be computed from o and
s. The stiffness ratio Ef/Em has no effect on the fiber volume and the
bundle strength. The matrix effectiveness 8 measures the gross effect of
the interface strength and the stress concentration around a broken fiber.
The stiffness ratio will have a definite effect on the stress concentration and
a possible effect on the interface strength. As shown in Reference 8, 8 can
vary between 1 and 2 for the case of perfect interfacial bond. If the bond
strength is zero, B will remain equal to 1 regardless of the stiffness ratio.

Thus, qualitatively, Bapproaches 1l as the stiffness ratio approaches

infinity.

The effect of Ef/Em on the transverse and shear strengths, Y and
S, may be correlated with the stress concentration around fibers. The
higher the stiffness ratio, the higher the stress concentration factor. From

this viewpoint, a lower stiffness ratio may yield higher values of Y and S.

Fiber Volume

Composites can be classified into two broad categories with respect

to fiber volume Vi

(1) Dense Composites. Composites containing a fiber

volume of 50 percent or higher will be classified as
dense composites. Significant interactions among the
fibers are present, Most glass-epoxy and boron-epoxy

composites now in use are in this category.

(2) Dilute Composites. Composite containing a fiber volume

of less than 50 percent will be classified as dilute compos -
ites. The mechanical interaction among the fibers is rela-
tively small. The behavior of a dilute composite on the
microscopic scale may be represented by the solution of
the problem of a single inclusion in an infinite matrix
domain., This type of composite is normally associated

with those utilizing metal matrices,.
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It is commonly believed that a higher loading of the fibers, that is, a higher
fiber volume, will necessarily lead to higher performance of the composite.
Based on the present work, this '"rule-of -thumb' is by no means conclusive.
Again, one should analyze the influence of the fiber volume on the various

mechanical properties on the macroscopic scale. These properties include

the gross elastic moduli and the principal strengths,

Insofar as the axial stiffness E11 is concerned, a higher fiber volume
will give a higher composite axial stiffness. The axial stiffness is linearly
proportional to the fiber volume. As far as the transverse stiffness and
shear modulus are concerned, a higher fiber volume will increase these
gross elastic moduli but the amount of increase is not linear. The quanti-
tative relations between fiber volume and E22 or G can be seen in ihe dia-

n
grams of Sections 3 and 4,

Both the fiber volume and the stiffness ratio discussed previously
have a strong influence in the determination of the final gross effective
moduli. It is therefore necessary to examine both the fiber volume and
the stiffness ratio simultaneously, This again can be achieved by using the
diagrams in Sections 3 and 4, In the case of axial stiffness, a simple
linear relationship is adequate and the contribution of each constituent
material and the fiber volume can be determined directly from the rule-of-

mixtures equation,

The influence of fiber volume on the axial strength is not very well
understood. The role of the matrix as a mechanism to isolate fiber breaks
is not defined other than by the use of an experimentally determined
factor 8. It may well be true that a dilute composite provides a more
effective means of isolating fiber breaks than a dense composite, This
will presumably give a higher value of Band, therefore, a higher axial
strength than anticipated. The problem becomes one of a trade-off between
the amount of matrix required to effectively isolate fiber breaks and utili-
zing the properties of the fibers in a given composite. Insofar as transverse

shear strength is concerned, dilute composites are also more favorable
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than dense composites because the interaction among the fibers is reduced.
A more favorable stress distribution results in the case of a dilute compos-
ite. This may provide higher transverse and shear strengths than a dense

composite with equal constituent material properties.

Fiber Cross Section

Noncircular fibers have been investigated in this report. However,

) &~

further studies will be necessary before definite conclusions can be made.

In this report, methods of analyses have been outlined and digital computer
programs presented for the determination of the composite elastic moduli and
stress distributions around noncircular fibers. A detailed study can be
carried out in the future for the evaluation of the relative merits of various

fiber shapes,

In Figure 26, the effective shear modulus for various fiber cross
sections for unidirectional glass-epoxy composites are shown. The moduli
for circular inclusions with fiber volumes of 70 and 40 percent are
1,09 x 106 and 0,45 x 106 psi, respectively. When the fiber cross section
is changed to a 2:1 ellipse, the shear moduli for the dense composite
(vf = 70)are 1.24 x 106 and 0.87 x 106 psi along the major and minor
axes, respectively, The effective modulus of an elliptical inclusion is
greater along the major axis and less along the minor axis than for a cir-
cular inclusion. As a comparison, the product of the two shear moduli is
approximately equal to the square of the shear modulus of a composite
containing circular inclusions. In this sense, the increase along the major
axis is offset proportionally by a decrease along the minor axis. The same

relationship holds for the case of a dilute composite (v, = 40).

Of the shapes studied, the circular fiber has the lowest stress con-
centration factor for a given fiber volume, If the stress concentration
factor can be related to the shear strength of the composite, the circular
fiber should give a higher shear strength than the other shapes studied
under this program, The behavior of noncircular fibers under the action

of transverse loading will presumably follow closely the previous
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conclusions. Both the elastic moduli and the stress concentration factor
will vary as the fiber shape changes. Quantitative information, however, is

not final at this stage,

The cross-sectional shape of the fibers will influence the axial stiff -
ness and strength since the fiber volume and the contribution of the matrix
will vary. No mathematical study has yet been made on the effect of the
binding matrix as a vehicle to isolate fiber failures. However, as the fiber
shape deviates from a circle, the ability of the matrix to heal fiber breaks
may decrease because of the stress concentration induced, e.g., at the
sharp corners of rectangular fibers or at the small radius of curvature at
the end of the major axis in the case of elliptical fibers. The B-factor in
Equation (72) will tend to approach unity, which is the lower bound of the

axial strength,

Filament Crossovers

Filament crossovers have been treated as an internal agency contri-
buting to the post-yielding, load-carrying capability of helical -wound tubes.
The influence of crossovers has been quantitatively shown by increases in
the effective transverse and shear strengths, and a decrease in the axial
strength, Thus, crossovers perform two functions: (1) they lock the lami-
nated composite together as an integral unit, thereby providing additional
load-carrying capacity beyond initial yielding, and (2) they induce stress
concentrations, possibly because of the abrasive action among filaments.
The net effect of the crossovers is to provide a strength level to helical-
wound tubes that usually falls between that corresponding to initial yielding
d the strength based on fiber failures. The test results of this program
indicated that most helical-wound tubes will fail according to the strength
level predicted by the locking capability of the crossovers., This level,
for intermediate helical angles, is higher than the initial yielding but is
lower than the strength predicted by a netting analysis. The influence of
crossovers is apparently insufficient to transfer the external load necessary
to cause fiber failures. On the basis that the strongest composites will be

those governed by the fiber strength, i.e,, fibers fail, the glass-epoxy
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helical-wound tubes tested under the present program fell short of the
optimum combination. Fiber failure was induced only in the 5 inch ID

pressure vessels,

A number of S glass helical-wound tubes were also made and tested
in torsion. The axial strength of the S glass is approximately one-third
higher than that of the E glass. The increased axial strength of the S glass
did not produce any increase in the ultimate shear strength of the tubes
subjected to torsion. The test data for the S glass tubes are shown as
crosses in Figure 17. From this figure, one can see that the ultimate
torque that the tubes carried did not differ much from that of the E-glass
tubes. This experimental observation is in agreement with the theoretical
prediction of the strength analysis of Appendix A, where a variation of the
axial strength of the constituent layer from 50 to 150 ksi did not induce any

significant change in the predictéd torsional strength.

The optimum strength of a helical-wound tube may be arrived at by
selecting the proper axial strength of the unidirectional composite and the
crossover strength required to transfer external loads. If the externally
applied load on a tube cannot induce fiber failures, it appears unnecessary
to use higher strength fibers, since the higher strength cannot be realized

because of the lack of an adequate internal agency.

Future Research

Two areas of additional investigation appear to be very important at
this time. One area deals with the characterization of filament crossovers.
From the theoretical standpoint, this study will reduce the amount of empir-
icism that is necessary in the present strength analysis. In particular, the
distribution and pattern of the crossovers as a function of various process
parameters, such as the diameter of the tube and the width of the roving,
should be included in addition to the helical angle. These parameters will
change the effective strength values which, in the present program, are

assumed to be constant.
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Another area which is of equal urgency is the investigation of the
inelastic behavior of unidirectional and laminated composites. When external
loading induces a stress level beyond the initial yielding, time-dependent
effects become very significant. Some of the experimental results presented
in this report were obtained by assuming time-independent material
properties. This idealization should be examined more critically in the
future. Assuming that the deformation and strength of structures can be
predicted with reasonable accuracy, it will be an interesting investigation
to consider optimizing materials for various structural applications. The
contribution of the constituent materials to the eventual structure can now be

determined, using the stiffness and strength analyses covered in this report,

LY
o+
A
ry
3]
4]
IS
4

The results o ic etudy will have a definite impact on the
objectives of materials scientists. The desired properties of both the fibers
and the matrix can be described in terms of general guidelines. These
guidelines may replace the present '"rules-of-thumb, ' which basically rely on

the limited validity of netting analysis.

Finally, extensive experimental measurements are needed in order
to conclusively establish the results presented in this report. Only with
sufficient experimental evidence, can designers of filamentary structures

proceed with structural analyses and syntheses with confidence.
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APPENDIX A

STRENGTH ANALYSIS OF LAMINATED COMPOSITES

A.1 INTRODUCTION

The Fortran program, Strengih Aualysis of Laminated Composites,
is written in two parts. The first part, identified by MN CM, i.e., Main-

Composite Materials, determines the coefficient matrices, and the second

part, identified by PARTWO, i.e., Subroutine PARTWO, deals with the yield

criteria,

has been used on the Philco 2000 digital computer, a 32K system,

This program is written in Fortran IV programming language and

MN CM is used in the stress analysis of a plate, cylinder, or pres-

sure vessel to compute,
(1) the composite moduli A, B, D, A%, B%, Hx*
D*, A', B' and D'.

(2) the thermal forces and moments defined by

h/2
(NiT, MI) = f C,. & Tl z) dz
1 -h/2 J )

for a constant temperature T across the laminated

composite,
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(3) the coefficients for each Ni’ Mi’ and T in the stress

relation

(k) _ (k) ' : '
o, = Cij (AJ!k + z Bjk) Nk + (Bjk + z Djk) Mk

) T . N a(k)] Tz
+[(AJ!k + z Bjk) Nk + (Bjk + szk) Mk i

for a plate, and

(k) _ (k) * T (k)
o, = Cij Ajk Nk + Ajk Nk - aj T
for a cylinder or pressure vessel,
from input values of Cg{), aﬁk) and hk (k =1, ...n), where n is the total
number of layers of the laminated composite. The derivation of these

equations is discussed in Section 2,
A.2 DETERMINATION OF COEFFICIENT MATRICES

The first part of the Strength Analysis program, MN CM, is used to

determine the coefficient matrices.

It is assumed that each unit layer is homogeneous. Thus, matrices

A, B, and D, whose elements are defined as

h/2 2
(A.., B..,, D..) = f C..(1,z,z° dz (i,j = 1,2 and 6)
-h/2 Y

ij* Tiy i)
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are computed from the relations

n
- (k)
Ay = X Gy (hk+l - hk)

k=1
& (k) .2
By = 1/2 k};l Cii | By - By ) (i) 1,2 and 6)
_ (k)f.3 3
Dy = 1/3 o] Ci5 \ Pre1 — Px

Matrices A*; R*, H* and D¥ are computed from matrices A, B and D as

A* = Al

Y = .als

g = Ba!

D" =D - BA™!B

Matrices A', B' and D' are computed from matrices A*, B, H and D as

Al = A,,: _ B:,: D:,:_l H>,<
B' = B  p*!
p' = p*}
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The coefficients of the thermal forces are computed from the relations

T h/2
N = f Ci. o. Tdz
-h/2 Y

[

l,.n

1,2 and 6

n
_ (k) (k) k
= { ;4:'1 Ci;" & " Py - hk\i T 4

and the coefficients of the thermal moments are computed from the relations

il

T h/2
M. f C.. ¢, Tzdz
-h/2 Y

-

l..n
1,2 and 6

1" n

n (k) (k) [.2 2 k
;1/21(2;‘1 Gy 9 [hk+1 - thT i

0, and thus the

i

For a cylinder or pressure vessel it is assumed that K

stress components for each layer are given as

(k) _ (k) )% % (k)
o0 = C gAJ.ka + (Ajkfckz 0, dz - o \ T;

.M

,.Za.nd()'

"H
—
.

jk 'k j

T superscript k
i, i,k

(k) w” o T (k)
Cij %A. N, + lAjk N - o

From these relations the coefficients of Nl’ NZ’ N6 and T are computed for

the stress components of each layer.
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For a plate the stress components at the surface of each layer

o) - gl

' ' ] [}
ij {(Ajk + ZBjk) Nk + (Bjk + ZDjk) Mk

+ [(AJ!k + ZBJ!k)fckz azdz

) ' (k)
+ (Bjk + ZDjk)_/-ckﬂ Otzzdz - aj ]T}

- ¢k

1 1 1 ]
i ;‘(Ajk + szk) N+ (Bjk + zD' ) M

_]k) k

] ] T 1
+ [ (Al + zBy) NJ + (B

' T (k)
ik + szk)M - aj ]T‘

k

where

superscriptk = 1l...n

and subscripts i,j,k = 1,2 and 6

From these relations, the coefficients of Nl’ NZ’ N6’ Ml’ 2 M() and T

are computed for the stress components at the surface of each layer.

A.2.1 INPUT PARAMETER DEFINITIONS

Parameter Definition
N N is the total number of layers
THTA THTA, defined for angle-ply composites,

is the fiber orientation or lamination

angle (degrees).
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Parameter

LPP

RM

LKL

MATRIX H

Cip Ciar G Sy
Cgp Coqr ELEMENTS
OF MATRIX C

MATRIX ALPHA

MATRIX THETA

104

LPP defines the particular case under

consideration.

LPP = 1 implies a cylinder or pressure
vessel.

LPP = 2 implies a plate.

J is a format control which defines the
heading to be printed.

J = 1 implies cross-ply

J = 2 implies angle-ply

J = 3 implies general laminate

RM is the cross-ply ratio (total thickness

of the odd layers divided by that of the even

layers)

LKL is a format control which defines the
heading to be printed.

LKL = 0 implies all layers intact

LKL = 1 imples all layers degraded

H(K) is the thickness of the kth layer (in.)

C(1, J, K) is the Cij element (psi) of the
anisotropic stiffness matrix C for the kth

layer.

ALPHA (I, K) is the ith element, i = 1,2
and 6, (in. /in. /°F) of the thermal

expansion matrix for the kth layer.

THETA (K) is the fiber orientation or

lamination angle (radians) for the kth layer.




A,2.2 INPUT DATA CARD LISTING

Card No. Parameter Data Field Format
1 N 1-2 12
THTA 3-7 F5.2
LPP,J 8,9 11
RM 10-21 Fl2.6
LKL 22 11
2to P H 1-72 Fl2.6
ro
Note: Card No. P - 2 ! |27 where N is the total
L o]

number of layers and [ ] represents the greatest

integer function.

P+ 1toQ C 1-72 El2.6

il

Note: Card No. Q (P + 1) + (N-1)

Q + ltoR ALPHA 1-72 El12.6

N-1
(Q+1)+[2]

R + 1toS THETA 1-72 El12.6

Note: Card No. R

Note: Card No. S = (R + 1) + [L\Iz')i]

A.2.3 OUTPUT OF PROGRAM

(1) Repeated Input Data.

(2) Coordinates of the layer surfaces (in.)
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(3)

(4)

A, the in-plane stiffness matrix (10 lb/in.)
Am, the intermediate in-plane matrix (10 -6 in. /1b)
A', the in-plane compliance matrix (10 -6 in. /1b)

B, the stlffness coupling matrix (10 +6 1b)

B" = - A"B, the intermediate coupling matrix (in.)
B', the comphance coupling matrix (10 -6 1/1b)

H* = BA" , the intermediate coupling matrix (in.)
D, the flexural stiffness matrix (10 +6 1b-in.)

Dq:, the intermediate flexural matrix (10+6 lb-in)

D' the flexural compliance matrix (10, -6 1/1b-in.)
Coefficients of the thermal forces (lb/in. /deg F)

Coefficients of the thermal moments (1b/deg F)

For a plate:

The coefficients of N), N (l/1n ), My, M2
Mg (1/in. ) and temperature (lb/m /°F) for stress
components SIGMA 1, 2 and 6 for each layer

surface.

For a cylinder or pressure vessel:
The coeff1c1ents of Ny, N,, Ng (1/in.) and tempera-
ture (lb/in. / F) for stresscomponents SIGMA 1, 2

and 6 for each layer.

A.2.4 SUPPORTING SUBROUTINES

(1)

(2)

(3)

Subroutine PARTWO:

Description is outlined in Paragraph A.3

Subroutine RW MATS:

This Fortran IV subroutine computes the inverse of
a matrix B from the linear matrix equation BX = C
where C is the identity matrix and X is the matrix
where the inverse is stored.

Aeronutronic Library Subroutine F4AMAMU:

This Fortran IV subroutine computes the real matrix
product C = AB in floating point single precision

arithmetic.




(4) Aeronutronic Library Subroutine F4AMSB:
This Fortran IV subroutine computes the difference of
real matrices A and B where the matrix difference A-B
replaces matrix B,
Note: MN CM can be used without entering Subroutine Partwo. This is
effected by the data control card KQR defined in Paragraph A. 3. 1.

In this case matrix THETA is not used in the computation; hence,

«t

this data card may either be blank or contain any arbitrary numbers
formatted E12. 6,

A.3 YIELD CRITERIA

Subroutine PARI' WO determines ihuse values of N, and/or Mi which
satisfy the yield condition defined in Section 2,

: k
For a cylinder or pressure vessel, the stress components, 0{ ), for

each layer can be written

(k) _ (k) (k) (k) (k)
o, = Li Nl + Pi N2 + Qi N6 + Ri T
where the coefficients Lgk), ng), ng) and ng) have been computed in

MN CM. Subroutine PARTWO considers the cases

l. Ny #0, N, =N =0
2. 2N} = N,, Ny =0
3. Ny #0, N, =N, =0

For a plate, the stress components, ng), for each layer surface can be written

(k) (k) (k) (k) (k) (k)
0‘i Ii Nl + Ji N2 + Si N6 + Ui M1 + Vi M2
» A VI A
i 6 i
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where the coefficients ng), Jgk), Sgk), ng), ng), ng) and ng) have been
computed in MN CM.

Subroutine PARTWO considers the cases

l.Nl#O,NZZNé):Ml:OW
2. N, # 0, N, = N, = M, =0
3. Ny # 0, Np = N, = M, =0
> i = 1,2 and 6
4. M, # O,N, = M, = Mg =0
5. M, # 0, N; = M} = Mg =0
6. M6#0,Ni:Ml=M2=0 J

k C o .
For the above cases, cg ) reduces to an expression in 2 variables,

one of the variables always being T,

(k)
i
represent the coordinate axes of the externally applied stress components,

The terms ¢; ', which are defined in the 1-2 plane, where | and 2

are transformed into the x-y plane, x and y being the material symmetry

axes, by the relation

- — — -
Ui{k) 7 mz n2 2mn _W U(lk)
Oilk) = n 2 m2 -2mn O'(Zk)

k

o | mn mn ol eat o ]
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wherem =cos 8, n = sin 6 and 6 = the fiber orientation or lamination

angle (radians) of the kth layer. Thus o-(k), o(k) and O(Sk) are also expres-

sions in 2 variables.

o (02
The yield condition for each quadrant in the (—%, -?Y) plane is given
as
2 2
(o) o o
R X 1 y s
Quadrant 1: (Y) - ﬁ( )( ) (?) (?) 1
2
Y oc_\[C c o]
b 1 b'e y y s
Quadrant 2: (T) - r_(T)(_f) (—Y—) <?) 1
O% 1 (%% c’y Oy O g
Quadrant 3: %T % s Ner - = = 1
2
g g o a
x L D3 | DY y s ) _
Quadrant 4: (7) a(Y)(YT> + (_Y_') (.S_) = 1
_ X _ X _ X' _ X ' '
where ry = T Y2 T ow T; < Ty T and X, Y, X', Y'and S are

defined respectively as XA(K), YA(K), XP(K), YP(K) and S(K). But since
( ) (k)

mmed and hence 0( ) O;k) a.ndo

and O are expressions in 2 variables, their signs cannot be deter-

(k) are substituted into the yield condition

for each quadrant, thus obtaining 4 quadratic equations of the form

where E, F and G are constants and Agk) = Nl’ N N6’ M M, or M

2’ I 2 6

For each input value of temperature, the four quadratic equations are

solved by the quadratic formula and the solutions are used to compute 0-( )

(k) (k)

and O;k). From the signs of o, and o'y

, it is determined which yield

109



condition should have been used and the corresponding solutions are assigned

to the quadrant associated with this yield condition.

Thus, a solution which represents a computed value of Nl’ NZ’ N6
M, MZ’ or M6 is valid if the quadrant to which it has been assigned is the

same quadrant as that of the yield condition which it satisfies.

A.3.1 INPUT PARAMETER DEFINITIONS

Parameter Definitions
KQR KQR defines a data control card.
KQR = 1 implies return to the main
program.

KQR = 0 implies that Subroutine PARTWO
is to continue reading data.
Note: KQR = 1 permits using the main program

without entry into Subroutine PARTWO,

LL LL defines the particular case under

consideration.

For a Plate:
LL = 1 implies N1
LL = 2 implies N2
LL = 3 implies N6

‘H~‘H~"H~"N~‘H~‘H~
o o o o o ©

LL = 4 implies M,
LL = 5 implies M,
LL =

6 implies M6

For a Cylinder or Pressure Vessel:
LL = 1 implies Ny £ 0
LL = 2 implies N £ 0

LL = 3 implies ZN1 = N2

110




Parameter

JK

NM

MATRIX T

MATRIX XA

MATRIX YA

MATRIX XP

MATRIX YP

MATRIX S

TITLE

Note:

Definition

JK is a format control that defines which
quadratic equations are to be printed.

] °oF Ml

JK = 2 implies cases N2 or M2

JK = 3 implies cases N6 or M6

For case ZNl = NZ’ choose JK = 2

JK = 1 implies cases N

NM is the number of input values of

temperature.

! \ ! = et e te ol
T(K) is toemperature (Degrees F)

XA(K) is the axial tensile strength (psi) of
the kth layer,

YA(K) is the transverse tensile strength (psi)
of the kth layer,

YP(K) is the axial compressive strength (psi)
of the kth layer.

YP(K) is the transverse compressive strength

(psi) of the kth layer,.

S(K) is the shear strength (psi) of the kth

layer.

TITLE is an alphanumeric description of the

case under consideration.
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A.3.2 INPUT DATA CARD LISTING

Card No. Parameter Data Field Format
1 KQR, LL, JK 1-3 11
NM 4-5 12

2to P T 1-72 Fl2.6

Note: Card No. P =2 + [%_—1] where NM is the number of input values of

temperature and [ ] represents the greatestinteger function.

P+ 1toQ XA 1-72 El2,6
Note: Card No. Q = (P + 1) + [ﬁg—l]

Q + 1ltoR YA 1-72 El2,6

Note: Card No. R = (Q + 1) + [—6-—]

R + 1ltoS XP 1-72 El2.6

Note: Card No. S = (R + 1) + [%i]

S+ 1 toT YP 1-72 El2.6

Note: Card No. T = (S + 1) + [—6—]

T + 1toU S 1-72 El2.6

Note: Card No. U = (T + 1) + [EI_G‘J_I]

U + 1 TITLE 1-72 12A6
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A.3.3 OUTPUT OF PROGRAM

(1) Repeated input data.

(2) For a cylinder or pressure vessel:
For each layer the quadratic equation obtained from the appro-
priate yield condition for each quadrant in unknowns T and Ni
orM;, i = 1,2 or 6.

Solutions of each quadratic equation for input values of tempera-
ture and the appropriate quadrant to which these solutions belong.

(3) For a plate output as given in (2) for each layer surface,
Note:

(1) A solution is valid if the quadrant to which it belongs agrees with
the quadrant of the quadratic equation which it satisfies.

(2) A complex solution is represented by -, 77777777 E-77. A
complex solution implies that no real values of N, or M, will
satisfy the yield condition, i.e., the temperature stresses have

already resulted in failure of the laminate.
A.3.4 PROGRAM LISTING

At the end of this appendix is a listing of the Fortran statements which
make up the program MN CM, its supporting Subroutine RW MATS and Sub-
routine PARTWO,

A.3.5 SAMPLE PROBLEM

The sample output presented at the end of this appendix is that
obtained for a two-layer, angle-ply cylinder, all layers intact, where
@ = 15 degrees. Subroutine PARTWO considers the case N1 # 0,

N, = N, = 0.
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Since the anisotropic stiffness matrix C is symmetric, only six of its
coefficients need be printed. Also, since the stress components of a cylinder
are not a function of Mi’ only the coefficients of Ni and temperature are
printed. Typical output format for a flat laminate plate is as shown in a
previous report, NASA CR-224. For a cylinder, the coefficients of the stress
components are given per layer since, within each layer, the stresses are
uniform. For a plate, the coefficients of the stress components are given for

each layer surface, as illustrated in NASA CR-224.

Using the method outlined in Paragraph A. 3, those solutions which
represent the correct values of N, in the sample problem for the given values
of temperature are as follows:

(1) For Compression - solution 2 of the quadratic equation

given for Quadrant 2.
(2) For Tension - solution 1 of the quadratic equation given

for Quadrant 4.
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MN CM - MAIN COMPOSITE MATERIALS PROGRAM

(PLATE)

CALCULATE THE COEFFICIENTS

READ INPUT DATA

COMPLETE THE FORMATION OF THE
ANISOTROPIC STIFFNESS MATRIX, C

v

CALCULATE THE COQRDINATES OF THE
LAYER SURFACES, Z(K), K = 1...N

v

LWRITE THE APPROPRIATE HEADING I

¥

L COMPUTE MATRICES A, BANDD |

!

COMPUTE MATRICES A*, B*, H* AND nTI
]

4

| 'COMPUTE MATRICES A', B', AND 0" I

v

CALCULATE THE COEFFICIENTS OF THE

THERMAL FORCES AND THERMAL MOMENTS

No [Ns P =17 | YES

OF N3, Ny, N%, M1, My, Mg AND

TEMPERATUR

(CYLINDER OR PRESSURE VESSEL)

o]

CALCULATE THE COEFFICIENTS
OF Ny, Np, Ng, AND TEMPERATURE

|

!

WRITE A, A*, A' AND THE COEFFICIENTS OF THE THERMAL FORCES
B, B*, B' AND THE COEFFICIENTS OF THE THERMAL MOMENTS
H*

D, D*, D'

WRITE Z AND THE COEFFICIENTS
OF Ny, N2, Ng, My, My, Mg AND

) BhhSntd

3

TEMPERATURE

SUBROUTINE RW MATS

RETURN

LcALL SUBROUTINE PARTWO' —I

CALCULATE THE INVERSE
OF MATRIX Q

NO
RETURN

IN MN CM

WRITE MATRIX Q IS SINGULAR

GO TO START

WRITE THE COEFFICIENTS
OF N1, N2, N AND TEMPERATURE
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SUBROUTINE PARTWO
MN CM CONTINUED

READ KQR, LL, JK, NM

ISKQR=17
NO

READ INPUT DATA

WRITE MATRICES Z, XA, XP, YA, YP AND S
TITLE

| REPEAT TOAFORK=1, 2,.-N

COMPUTE THE ELEMENTS OF THE TRANSFORMATION

[ MATRIX FOR @ = THETA (K)

[ REPEATTOBFORJ=1,2 l
NO

FOR A PLATE SUBROUTINE PARTWO VES

IS EXECUTED FOR EACH LAYER SURFACE

—

ISLPP =17

NO

v

STORE THE COEFFICIENTS COMPUTED
IN MN CM OF THAT VARIABLE
DEFINED FOR THE INPUT VALUE OF LL

STORE THE COEFFICIENTS COMPUTED
IN MN CM OF THAT VARIABLE DEFINED
FOR THE INPUT VALUE OF LL

v

STORE THE COEFFICIENTS OF

.

TEMPERATURE COMPUTED IN MN C

v

STORE THE COEFFICIENTS OF
TEMPERATURE COMPUTED IN MN CM

|

STRU
COEFFICIENTS WHICH REI(’BESENTS
THE COEFFICIENTS OF 0

UCT A
COEFFICIENTS WHIC
COEFFICIENTS OF O

FI‘SEPRESENTS THE

[ R <

1

» 1 <
COMPUTE, THE COEFFICIENTS OF 0,0, o™,
anD g K'BY MATRIX MULTIPLICATION OF
THE TRANSFORMATION MATRIX WITH THE

CALCULATE THE COEFFICIENTS OF THE 4
QUADRATIC EQUATIONS OBTAINED FROM
THE YIELD CONDITIONS

SOLVE THE QUADRATIC EQUATIONS
FOR INPUT VALUES OF TEMPERATURE

Founm: o™ ano o’“" FOR EACH souunoﬂ

BASED ON THE SIGNS OF O

"o ISLPP =17

FOR A CYLINDER OR PRESSURE
VESSEL SUBROUTINE PARTWO
1S EXECUTED FOR EACH LAYER

WRITE THE COORDINATE OF THE LAYER

SURFACE, THE QUADRATIC EQUATIONS,
THEIR SOLUTIONS FOR EACH VALUE

OF TEMPERATURE AND THE

ASSIGNED QUADRANT NUMBERS

WRITE THE QUADRATIC EQUATIONS, THEIR
SQLUTIONS FOR EACH VALUE OF
TEMPERATURE AND THE ASSIGNED
QUADRANT NUMBERS

{ R

. |
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FORTRAN IV COMPUTER LISTING



THETAL50) s N+ THI 3,3), oLLyPCNO13,5042) +RB(3,50,2) 4
3150421 PCNTRU3,50,2),PCHOL3,50,21,PCHT(3,50,2),
1305052)0RCI345002)9PCT1345042) oRS(342) 4RO{342) +XA{50)
FoXPUS0)YAUSO) s YPIS0)4LVSI®)1CVPI4} ,CTS (4) NM,
.50.2).7(50).SlGIX(ZhSlI‘mV(Zl'lWlD(‘.SO.Z).PR’(!.SO):
-::;'CNTIIL S0).CNT(3,501,PRCE3,501,CT(3,50),TITLE(LD)
t

ALPHAL3,50) sHI50) ¢A(343)48(3,3),0(3,3),C(3,3,50),
PoHCL50) s ANE346),X(3,31,ASTARI3,3),85TAR (3,31,
133)4DSTARI3+3),0PRI{3,3),BPRI(3,3),APRI{3,3),
950} s TSUM{3) o TADD (3] ,RNT(3) o RHT(3),SASR(3),
3455),CSUML3,50,2)

Ny THTALLPP Jo RN, LKL

2 FORMATY (12,F5.2,211.F12.6,11)

MAXIMUM VALUE OF N IS N = 30

THTA IMPLIES ANGLE - PLY

LPP = 1 IMPLIES PRESSURE VESSEL OR CYLINDER
LPP = 2 IMPLIES PLATE

J = 1 IMPLIES CROSS-PLY

J = 2 IMPLIES ANGLE-PLY

J = 3 IMPLIES GENERAL LAMINATE

RN = CRODSS-PLY RATIO

LKL = O IMPLIES ALL LAYERS INTACT
LKL = 1 IMPLIES ALL LAYERS DEGRADED
READ{846) [HIK)y K = 14N}

61
e, ReKPoCllo20K)oCi202eKDoCU3014K)4CE3424K}4C(3,3,K)

COALPHALT4K o I=143) o Kal N}

READ (8,7) {THETA(K)s Kx1,N)

Cl2s1eX) » Clle2,K)

FomoLussaens

1 = L£13,2,0)

2
TOTAL = TOTAL + H(K)

L]

ZIK) = 2{K-1) ¢ H(K-1)
IF {J .EQ. 2} GO TO 300
IF (J .EQ. 3) GO TO 400

FORMAT{LH1,37X s FHCROSS~PLY, 4K, 3HM =F5.3,5X,1THALL LAVERS INTACT/

12¢1%s 12HLAYERS (N = [2,1H})

625 FORMAT(IN1:41Xy 16HGENERAL LAMINATE,4X,)7HALL LAYERS INVACT/
51XeJ1241Xs 12HLAYERS (N = [2,1H})

300 IF (LKL .EQ. 1) GO TO 212
WRIVE (5,210) THTA,N,N

FORTRAN 4 PROGRANM L]
0001 CHN Cx
0002 COMMON
0003 X PCNTL
0004 x PCHTR
0005 X 25050
0006 X SoL(s
0007 X CNO(3
0008 X 1 JKe2
0009 DIMENSION
0010 X HS{50
0011 X HSTAR
0012 x Sumts
0013 X osum(
0014 1 READ (8,2)
0015
0016 c N = NO. OF LAYERS
0017 [
o018 [
0019 [
0020 4
0021 [4
0022 [
0023 [
0024 c
0025 [4
0026 c
0027
0028 6 FORMATI6F12
0029 READ(E.T)
0030 x sKelyN)
0031 T FORMAT (6E12.6)
0032 READ(8.,7)
0033
0034 TOTAL = 0.0
S82s 00 11 K =}
0036
0037
0038
0039 11
0040 Ztk) = -TOVAL/2.
0041 MM = N + }
0042 00 12 Kk = 2
0043 12
0044
0045
0046 WRITELS,200
0047 200
0048 X 50X,
0049 GO0 TO 218
0050 600 WRITE(S5,625) NN
0051
0052
0053 60 10 213
0054
0055
0056 210
0057 X

FORYRAN 4 PROGRAM

0058
005%
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
007
0078
0079

X

FORMAT({3H1 433Xy HANGLE-PLY, 46X 4 BHTHETA = F5.2¢1X+ THDEGREES s 64Xy
1THALL LAYERS INTACT/

MN CM

52X 124 1X9 12HLAYERS (N = [2,1H))

G0 Yo 21%

212 MRIVE (5,214) THTALN. N

214 FORMAT{1M1,33X,9HANGLE-PLY,4

X
X
218

226 3 3 26 X 3 X

X
223
X

10

3

20

35
33

3

3

°

31

w

32

X
L9HALL LAYERS DEGRADED/

+8HTHETA = FS5.2,1X, THDEGREES, X,

52X, 129 1Xs12HLAYERS (N = 2,1H))
MRITE (5,220)
220 FORMAT{/1HO¢1X, SHLAYER s 2X, SHTHICKNESS 92X o 14HCODRDINATES UF 7
3Xy3HND. 93X, FHOF LAYERS,2X, 14HLAYER SURFACES, 15K,
26HCOEFS. OF STIFFNESS MATRIX,14X,2THCOEFS. OF THERMAL EXPAN

SION/
9X, BH.

LINCHES ) 26X BHIINCHES ) 122X 1 THILO46 LB, /IN.SQ. ) 22X,

21H(10~6 IN./IN./DEG.F.}//
SXgLHK o 6X o AHHIK) ¢ SXoAHZIK ) p4X ¢ GHZARPL ) ¢ 3N HHC (1410 43X,

6MC (]

92) 93Xy 6HCI242)93Xe8HCL6s 1) s 3K 6HCEE,12) o 3Ky 6HCT696) 42X,

BHALPHATL) s 1X¢ BHALPHA{2) o 1X, SHALPHA(6)//)

WRITE (5,22
Ci3,

5} TKoHIK) 424K ) o ZEK#1) 0CT1 oBoKDsCUL42,K) oCU2424K],
sKFaCU302¢K)eC13930K),ALPHALL K] ALPHAIZ oK) ¢ ALPHA[3,K}

oK H
FDRNAI’I)X.l2.3!.0’F9.6.0'F9.Q'0’F9.4.-6"9-Q.-APF’-‘.~69F9.§-
~6PF9.4,-6PF9.4,-6PF9. 4,
OPFI.4,6PFI.4,6PF9.4)
DO 10 K = 1,N
HSIK) = Z(KéLl)es2 - 2(K)se2
HCIK} » Z(K+l)ee3 = Z(K)ss3
00 20 1 = 1,3
00 20 J = 1,3

Al1,J) = 0.0
BlIsd} = 0.0
Dt1,3) = 0.0

00 30 X = 1
Allsd) = AL
B8(1,J) = B¢
Diled} = D{
BlI,J} = 81
D(1.4) = DL
CONT INUE

»
z
-
-

o o
- —
NN NN

»

8

AN(1,1¢3) =
IF (L JEQ.
CALL MATS (
IF (MATERR)
WRITE (5,3)
FORMAT (1HO.
GO TO 1

CALL FamAnU
00 40 1 = )
D0 40 J = 1
ASTAR(T,J)
BSTAR(I,J?

N

Ted) & ClledoK) » HiK)
Ted) o CUIydiK) ® HSIK)
T1ed) ¢ CUIedsK} » HCIKD
I1edd72,

I14d)/3.

*3
1.0
1) GO TD 34
ANgXs343,MATERR)
32432431
{EALE.J)y 1 ® 1,3}, J = 1,3)
» 20HMATRIX A IS SINGULAR//(3{-6PFB.4))}

130343, X08,85VAR}
3
3
= N(1.d)
= =BSTAR{I,J)
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0115
0116
0117
0l18

FORTRAN 4 PROGRAM

0172
o173
0174
0175
0176
LT

0228

M CH

CALL FEMAMU (34343,84X¢HSTAR)
CALL FAMAMU (3,3,3,HSTAR,B,0DSTAR)
CALL F&MSB (3,3,D,DSTAR)
00 45 1 = 143
0D 45 J = 1,3
AN(T.J) = DSTARLI.J)
L=l
GO TO 33
CALL MATS (AN,DPRI¢3s3,MATERR)
IF (MATERR) 36436413
13 WRITE (5,5) ((DSTARUIoJ)y 1 = 1,30, J = 143}
FORMAT  {1HO,24HMATRIX DSTAR 1S SINGULAR//(3{-6PFB.4)))
G0 70 1
CALL FAMAMU 13,3,3,85TAR,DPRI,BPRI)
CALL F4MAMU (3,3,3,BPRIMSTAR,APRI)
CALL FAMSB {3:3,ASTAR.APRI)
DO 50 § = 1.3
00 50 K 1N
SUN{T,K) = 0.0
00 50 J = 143
SUMIEGK) = SUMEISKE ¢ CUIodok)eALPHALS,K)
00 60 I 1,
TSUMIT)
TADD( I}
00 3% X 1N
TSUMITY TSUMIT) ¢ SUMIT,XIeH(K)
TADDLI) TADD(L) + SUMII(K)®HSIK)
RNT(I) » TSUM(T)
60 RMTIE) = TADD(I)/2.
IF {(LPP .EQ. 2) GO TO 100
DO 70 K = 14N
DO 70 1 = 1,3
CNDU1.K)} = 0.0
CNT{I,K) = 0.0
CNTR(I,K)= 0.0
00 70 J = 1.3
CNOII.K) = CNOLToK} ¢ CEI,JeK)IOASTARII, L}
CNTUT(K) = CNTLIoK) # C{LsJ KIGASTARLI,2)
70 CNTRUTK)® CNTRUEKS ¢ CUEoJsK)CASTAR(S,3)
00 90 1 = 1,3
SASR(1} = 0.0
D0 90 J = 1,3
SASR{I) = SASRUL) & ASTAR(I,JIeRNT(J)
00 115 X = 1,N
00 115 1 = 1.3

L}

w

3

+*

w

3

o

5

o

0.0
0.0

s

9

110 CTC14K) = CT(I,K) ¢ CUlyJsK)nSASRLJ)
115 CTUI,K) » CTII.K} = SUMLIWK)

G0 Y0 100
100 OD 75 K = LN
00 751 = 1,3

00 7S LR = 1,2

PCNOLI+K,LR) = 0.0
PCNT(1.,KsLR} = 0.0
PCNTR(L+KyLR) = 0.0
PCHO(T¢K.,LR) = 0.0

MN CH

PCMT(14KyLR) = 0.0
PCMTR{1,K.LR} =0,.0
DO 80 K = 1,N
DO 80 1 = 1.3
DO B0 J = 1,3
PCNOC1,Ky 1) PCNOC [oKo11¢C{ToJoKIO(APRI(I¢1)+ZIKIeBPRILI,L)]
PONT(ToKy 1) & POCNTUL Ko 1IoC (1, oK) (APRILI,2}4ZIK)SBPRILY,21)
PCNTRIToKel) = PCNTRELoKe1)¢CULoJdoKISCAPRI(J93)+Z(K)1BPRILI,D))
PCNOLT+Ky2) = PENOUL Ke2)¢CI1,JoKI® LAPRI{I,1142{Ke1)oBPRIII, 1D}
PCNTI1.Ko2) = PCNTUT4Ks21¢C1 Ty oKIn(APRI(J,2042{Ke11oBPRILI,2))
PCNTRII,Ke2) = PCNTRIT,Ke2)4C (1,1, KIO(APRI1I,3)+2(KeL)OBPRICI,3))
PCMO(14Kel) = PCMO{L KoL) ¢C{TsJoKI®(BPRI{IoLI+ZIK}ISDPRILI 1D}
PCHT(13Ky 1) = PCMTIT Ky 11411, oKI0(BPRILI,2)¢2IKIODPRI(JI2))
PCMTRIT 3 » PCMTR(I,Ke130CtE JeK)Io(BPRI{J,II+ZIK}DPRILIL3))
PCMO(T,K 2} = PCMOE14Ko21¢C (T4 oK) (BPRE(S,1I#ZIKeLIDPRILISLI)
PCMV(14Ke2) ® PCMT(I,Ko214CIT3JsK)®EBPRILI,2)0ZIKe1I8DPRI(I,2))
80 PCMTRULI,K,2) = PCATRIL,K,2)4C(14dsK BPRI{J,3)¢2IK+1)#DPRI(Js3)}
N4 = N ¢ 1
D0 120 K = 1.MM
0O 120 1 = 1,3
DSUM{1,K) = 0.0
00 120 J = 143
120 DSUMI[,K} = DSUM{I(K) ¢ (APRICL4J) « ZUKIBPRI(I¢JI)eRNT (I} ¢
X (BPRI{I,J) ¢ ZIKIDPRI{IoJ))*RNTLS)
DO 140 K = 14N
00 140 I = 1,3
CSUMLI«Ks1) = 0.0
CSUM{1,Ke2) = 0.0
00 130 J = 1.3
CSUMELiKe1) = CSUMETIKe1) ¢ Ct1,0eKISOSUNLIK)
130 CSUMCI4Ke2) & CSUMITI(Ks2) ¢ CLIoJeKIODSUM{I KL}
PCT(I,Kel) = CSUMIToKel) = SUMLILK)
140 PCTIT, ) ® CSUMETI,Kyp2) = SUM{T,K)
T00 WRITE(5,230}
230 FORMAT{///1HOo 15X, LHA ;31X 2HA® 27X, THA PRIME,12X+22HCOEF. OF VHERM
XAL FORCE/
10X, 14H{10¢6 LB./IN.) 218X, 141106 IN./LB.) 10X,
4 14HI10-6 IN./LB.) 421X, 16HILB./IN, /DEG.F.}//)
WRITE(S5,235) (ACTol)oAlTo2)oALE¢3)oASTAR{L,1),ASTARIL42)
ASTARCIL3)oAPRTCT 1) oAPRI(T421sAPRICES3) o1 RNTIT) 412143)
235 FORMAT(LX¢=6PF10.4,-8PF10.4,~6PFL0.4,2X,6PF10.4,6PF10.4,
X BPF10.4,2Xs6PFLO. 4, 6PF10. 4, 6PFLO. 45X LHN,
x [1e3H-T +1X,0PFB.4)
WRITE{S,240)
240 FORMAT(/1HO¢15X,1HB,31X,2HB,2TKs THB PRINE,12X,23NCOEF. OF THERNMAL
X NOMENT/
x 12Xy 10HC 1046 IN.},22Xo10H(1040 IN.)s21X,12HIL10-6 17LB.}o14X,
12HILB . /DEG.F.)//}
WRITE(3,248) (BUL 1) B8(Te2)BU1s3),BSTAR(I,1},BSTAR(L 2}y
X BSTAR(T43)oBPRICI.114BPRITL2)4BPRITLS3) .1 RATEI) olmle3}
245 FORMAT(LXy~6PF10.4,~6PF10.4,-6PF10.4,2X OPFL0.4,0PF10.4,
OPF10.4s2X 6PF10.446PFL0.4,6PF10.4,5X 1HM,
X Tl 3H=-T 4 AX,OPFB8.4)
WRITEUS,250)
250 FORMATL/LHOs4TXe2HHE /44X, 10H(1040 IN.}//)
WRITE(3,25%) THSTARC 1511 oHSTARIT,2) o HSTARIIL3) 4121430
295 FORMAT{33X,3F10.4)

7
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0229 WRITE(S,260)
0230 zeo FORMAT(/1HO s 15X 14D+ 31Xy 2HD® 4 27X THD PRIME/
0231 10X, 13H110¢6 LB.IN.),19X, 13H{1046 LB.IN.},18X,
0232 15H(10-6 1/LB.IN.)//}
0233 unnE(s.zasl (OCT+11,001,2)4D41,3),DSTAR(I,1)4DSTAR(I+2),
0234 DSTAR(T143)¢OPRI{Ee1},0PRICT42)4DPRI{143) o121¢3)
0235 265 Fonnnux.-sm 2=6PF104%s~6PF10.452X -8PF10.4,~6PF10. 4,
0236 ~6PF10.40 2K, 6PFL0. 42 6PF10. 42 6PF10. 4]
0237 IF {LPP .EQ. 1) GO TO 400
0238 WRITE (5,270}
0239 270 FORMAT( /1404 6Xy 1HZ,8X,6HSTRESS, 3X11HCOEF. OF N1+2X¢11HCOEF. OF N2
0240 x +2Xs L1HCOEF. OF N6+2X,11HCOEF. OF M1,2X,11HCOEF, OF M2,2X,
0261 x L1HCDEF. OF M6,2X¢14HCOEF. OF TEMP./
0242 x SXsSHUING J o #X s IHCOMPONENT ¢ 4Xs THIL/TN. 1 26X THIL/ TN 96X o
0243 x THIL/ING) 9 &Ks 10HET/INLSQ0 } 43X ¢ LOHIL/IN,$Qu ) 03X
0244 X 10H{1/TIN.SQ.) 43X 15HILBL/IN.SQ./F . 1/7)
0245 D0 500 K = LN
0246 WRITE{S5,275) K
0247 275 FORMAT(SOX,9H-~ LAYER o12,3H ==//)
0248 WRITE(S,260) 2(K}, (PCNO{I,Ks1)PCNTUL,K\1},PCNTRCI(Ks11e
0249 x PCMOCToKe 1} ePCMTIToKo1) PCMTRIT oK, 1),PCT(1,Ky1) 513143},
0250 x T(KeLlly (PCND{E4Ke2)PCNT(14Ke2) o PCNTRIT,K42),
0251 PCMO(ToKe2) o PCHTLToKo21oPCMTREESK¢2) o PCT(T4Ks2) o Iw143)
0252 zso Fonnu(ax.ss 494X, THSIGMA 144X F8.46¢5F13.4,6X,FB.4/
0253 21Xe1H244X+FB8.4¢ 5F13.4,6X sF8. 4/
0254 21X, 1H6s 4XoF8. 43 5F13. 406X sF8.47)
0255 500 CONTINUE
0256 308 CALL PARTWO
02517 60 10 1
0258 400 WRITE(S,285)
0259 285 FORMAT{/1HD,30X¢6HSTRESSe3X,11HCOEF. OF N1,2X,11HCOEF. OF N242X,
0260 x 11HCOEF. OF N6s2X,14HCOEF. OF TEMP./
6261 x 29X FHCOMPONENT , X, THIL/ENL) 46X THIL/ENL} 46X THIL/ING ) 44X,
0262 x 15HILB./IN.SQ/Fa}/ /)
0263 00 550 K = 1,N
0264 WRITE (5,290) K
0265 290 FORMAT(S55X, 9H-— LAYVER .12.3
0266 WRITE (3,950  iLaGii S LI
2.7 20E CABMATIANY. THETIGMA 1. 6X.F! s.an.hax.Fa.u
0268 x 36X, 1H2 X FB. 45 2F13.4,6X,F0. 4
0269 36X.1N6.4X.F0.hZFlJ.Mbl.FO.bII
0270 $50 CONTINUE
0271 GO TO 308
0272 END
FORTRAN & PROGRAM SUB RW MATS
0001 CSUB RW MATS
0002 SUBROUTINE MATS{A¢XsN,H MATERR)
0003 DIMENSION A{3,6}¢X{3,3}
0004 MATERR=G
0005 MMEN+N “ATS0003
0006 DD 15 1=2,N MATSDO04
0007 70 11=i-1 MATSO000S
0008 7 00 15 J=l,11 MATS0006
0309 8 IF {Al1,J).EQ.0.0) GO TO 15
oc1o 9 If ((ABS(A(JsJ))-ABSIAIT4J))).1LT.0.0) GO TO 11
0011 10 R=A(I.J)/ALJ4d) MATS0009
0012 GO TO 130 MATSO010
0013 11 ReA{J,JI/ALL, 40 MATSO011
0014 00 12 K=l MM MATS0012
0015 BaA(J,K} MATS0013
ouls AlJyK)=ALT4K) MATS0014
0017 12 AlI4K)=B MATS0015
0o18 130 Jumj+l MATS0016
0619 13 D0 14 KeJJ MM MATSO0017
0020 14 AUT,K)I®AUTeK)=ROALILK) MATSO018
8021 18 3 MATS0019
0022 S(A(N¢N) }~1.06-101.67.0.0) GO TO 17
0023 16 CONTINUE
0024 100 Founn(zano ELEnEnnlz.lN.lz.lm.
0025 38H VERY SMALL. CASE DELETED BY MATS
0026 nne (551003 NoN
0027 MATERR=]
0028 60 T0 500
0029 17 DO284=1,M MATS0022
0030 KKaN+) MATS0023
6031 X{Ns J}oALN,KKI/AININD MATSOG24
0032 00281=24,N MATS0025
0033 JI=N=-1+] MATSO026
0034 B=0, MATS0027
0635 T1=N-142 MATS0028
0036 00 25 Kall,N MATS0029
0037 25 BaBeAlJJ,K)eX{K,J) NATS0030
0038 IF (CABSIA{JJIedJ)}=1.0E-10}.LE.0.0) GO TO 16
0039 28 X(IJpJ)=(ALIIIKKI=-BIZALIINII) MATS0032
0040 500 RETURN
0041 END
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0001 CPARTHWO
0co2 SUBRDUT INE PARTWO
0C03 COMMON THETA(501 4N+ THI343),LPP,LL,PCND(3,50,2) 4RBI3,50,2)
0004 X PCNT(3,5042),PCNTRE3,50,2)4PCMO(3+5052),PCMTI3,5042),
000% X PCNIR(!.SO'Z).RC(3.50.2).PCN3.50.2I.RSIS.Z).RD(!.Z).XMSO)
0006 x ¢SIS50),XPUS0},YALS0),YP(50),CVS{4),CVPI4),CTS(4) (NN,
0007 X SOLt4¢5002)4T150),SIGMX{2},SIGMYE2) s 1QUAD (450421 4PRB(3,50),
0008 x CNO(3+50) 4CNTR{3,50),CNT{3,50),PRC{3,50),CT{3,50), TITLEL1D)}
0009 X e JKy2155)
ocl1o 1 READ {By2) KORyLLyJKoNM
0011 2 FOANAT (311,12)
ool2 < KQR = O IMPLIES SUBROUTINE IS TO CONTINUE READING
0013 4 KQR = 1 IMPLIES RETURN TO THE MAIN PROGRAM -
0C14 c LL IMPLIES CASE UNDER CONSIDERATION
0015 c FOR PLATE
0016 c LL = 1 [MPLLIES N1 NDT EQUAL TO 0.0 v
0017 c LL = 2 IMPLIES N2 NOY EQUAL TO 0.0
¢ule [ LL = 3 IMPLIES N6 NOT EQUAL TD 0.0
0c19 c LL = 4 IMPLIES M1 NOT EQUAL TO 0.0
Qo020 c Lt = 5 IMPLIES M2 NOT EQUAL TO 0.0
0021 < LL = 6 IMPLIES M6 NOT EQUAL TO 0.0
ot22 [4 FOR CYLINDER ~
023 c LL = 1 IMPLIES N1 NOT EQUAL TO 0.0 -~
0024 [ LL = 2 IMPLIES N6 NOT EQUAL TO 0.0
0025 c LL = 3 IMPLIES 2N1 » N2 ~
026 [ JK = | JMPLIES CASES N1 OR M1
Qo27 [ JK = 2 IMPLIES CASES N2 OR M2
0028 [ JK = 6 JMPLIES CASES N6 DR M6
0029 < NM = ND. OF INPUT VALUES OF TEMPERATURE
€G30 [4 MAXTMUM VALUE OF NM = 50
0031 IF tKQR .EQ. 1) GO TO 10
0032 READ (B46) (T(K}, Kal,NM)
0033 READ (B+7) (XA{K)y KxlyN}
0C 34 READ (B8,7) {YA(K], Kal,N)
QC35 READ [847) (XPIKD, N}
0036 READ (8,7) (YPI{K), Kel,N}
0037 READ (8+7) (S(K)y K=l,N)
[[1} 6 FORMAT {&6F12.6)
0039 T FORMAT (6El2.6)
0040 READ {B,4) TITLE
0041 4 FORMAT(L2A8)}
oL 62 308 WRITE(S5,303)
QL43 3C3 FORMAT(IHL, 1Xo LHZ43Xs 22HAXTAL TENSILE STRENGTH,2Xo26HAXIAL CONP
0044 XRESSIVE STRENGTHe3Xy2THTRANSVERSE TENSILE STRENGTH,2X,31HTRANSVERS
0045 XE COMPRESSIVE STRENGTH/LXo4H{IN}o9XoSHIPST),22X,5HIPST) 23X, SHIPST
[ETY X)o26X,SHIPSIV//Y
0047 DO 306 K=14N
0048 WRITE (54307) ZUK) s XALK) o XP{K) ¢ YALIK) ,YP(K)
0049 307 FORMATIFB.4;3X0E13.6,12X¢EL3.6,16X0EL3.6210X,E13.0)
Q050 306 CONTINUE
0051 WRITE 155309) {SI(K), K = L1,N}
0052 309 FORMAT (1HOs52Xs L4HSHEAR STRENGTH/STX,5H(PSI)//(52X.E13.6))
0053 WRITE (5,703) TITLE
0C54 TO3 FORMAT(1H1,4TX, THCASE +10A6)
0055 TEMP = - TTTTTITTVE-TT
056 DO 599 K = LN
ocsY RN o COS(THETA(K)}
FORTRAN & PROGRAM PARTWO
0058 RN = SINI{THETA(K))
0059 TMil41)} = RMeRM
0060 TM{1,2} » RNeRN
0061 RPMN = RMSRN
0062 THE1,3) = 2.eRPMN
(%1 TME241) = THMI142)
0064 TH(2,2) = THM{L,41)
0065 TH{243) = -TMI1,3)
00686 TM{3,1) = -RPMN
oue? TME3,2) = RPMN
0068 TM(3,3) = TM[1,1) - THMI1,2)
0069 IF (X .EQ. 1) GG TO 73}
0070 MRITE {5,733)
01 733 FORMAT(1H]1)
0072 731 WRITE(5,710) K
0073 710 FORMATI/1HO+ 52X, 9H=~ LAYER 412,3H --/)
0074 00 598 J = 1,2
0075 (F (LPP .EQ. 1) GO YO 8O
0076 GO TO t6014602,603,604,605,606) 4 LL
0077 601 DO 610 [ = 1,3
o078 610 RBUI,KyJd) = PCNOLI,Ked)
0079 GO0 TO 622
0080 602 DO 612 | = 1,3
0081 612 RBUIL.KyJ) = PCNTUI oK)
0082 GO TO 622
0083 603 DO 614 [ = 1,3
0084 614 RB(1,KyJ) » PCNTR(T,KeJ)
0385 GO TO 622
0086 604 DO 616 [ = 1,3
0087 616 RBLIJKeJ) = PCHOLTK,J)
[DLL] G0 TO 622
0089 605 DO 618 | = 1,3
0090 618 RBII.+KyJ) = PCMT{[,K,J}
0091 GO TO 622
0092 606 00 620 1 = 1,
0093 620 RB(I,KyJ} = PCNII(I.K.J)
0094 622 DO 624 1 = 1.3
0095 624 RCUTKyJ)} = PCT(L.K,J)
0096 00 626 1 = 143
0097 RSU1,1) = RBUI,Ked)
0098 626 RS{1,2) = RCII,KeJ)
0099 GO TO 627
o100 801 IF {J .€Q. 2) GO YO 598
o101 GO TO (802,804,808), LL
o102 802 DO 810 | « 1,3
0103 810 PRB(1,K) o CNO(1.K}
0104 GO To 817
010% 804 DO 812 | = 1,3
oL06 812 PRB(L,K) = CNTRIN,K)
0107 GO TO 817
o108 806 DO 814 1 = 1,3
ol09 614 PRB(II.K) = .5CNOLI.K) ¢ CNTIT.K)
o110 817 DO 819 I = 1,3
o1 819 PRC(IeKk) = CTII,K}
€l12 00 821 1 =
o113 AS(Ly1) = nnu.n
Oll4 821 RS(142) = PRCULK)
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0172
0173
0l74
017s
0176
0177
0178
0179
o180
0181
o182
0183
0184
0185
o186
o187
o188

PARTWD

627 CALL FAMAMU(34342,TM,RS,AD)
S1 = RD(1,1)ne2

2,*RD¢

JeRD{3,42}

§2 =
$3 =
54 = 2
$5 = 2.eRD(1,1)%RD{1,2)
$6 = RD(1,219RD(2,1) + RD(1,118RD12,2)
ST = 2,eRD(2,1)*R0(2,2)
=
-

RD(142

S10 = RD(1,2)#RD(2,2)}
S11 = RD(2,2)ee2
S12 = RD(3,2)ee2
R1 = XA{KI/YA(K)
R2 = XPIK}/YALK)
R3 = XP(K}/YPIK)
R4 = XA(K}/YP(K)
5Q = SiK)es2

YAS = YA(K)ee2
XAS = XA{K}es2

2
XY = XA(K)®YA{K)
XPYP = XPIK)sYP{K)
XYP = XA{K)»YP(K}
XPY = XP{K}eYAIK)
CVS(1) = S1/XAS -S2/(R1sXY)+ SI/YAS + S4/SQ
CVS(2) = S1/XPS ~S2/(R2eXPY)+ S3I/YAS + $4/%Q

CVSL3) = S1/XPS ~S2/(R3eXPYP)e SI/YPS + S&/SQ
CVS(4) = SI/XAS -S2/7{R4eXYP)+ S3/YPS + $473Q
CVPIL) = S5/XAS -S6/(R1eXY)+ ST/VYAS + $8/SQ
CVPE2) = S5/XPS -S6/{R2*XPY}+ ST/YAS ¢ $S8/SQ
CVP(3) = S5/XPS ~S6/(R3eXPYP)+ ST/YPS # $8/SQ
CVPL4) = S5/XAS -S&/{R&sXYP) + ST/YPS « S8/5Q
LTSE1) = S9/XAS ~SLIQ/(RL1eXY)+ S11/YAS + S12/5Q
CTS(2) = S9/XPS -S1O/iRZ=kPViv 31i/7AS : 512760

lrniis COUVRE €N/ IRAPYP IS S11/YPS & $12/8Q
CTS{4) = S9/XAS -S10/{R&eXYP)+ SIL/YPS ¢ S12/50Q
D0 660 I = 1,4
DD 640 JL = 1,NM
DISC =(CVPIL)aT(JL))®e2 = &4, oL¥SUI)a(CTSII)oT(JL)me2 ~ 1.}
634 IF (DISC .LV. 0.0) GO TD 636
SOLEIeJLy 1) = {~CVPLI)eT(JIL) + SQRYIDISC))/(2.eCVSCI))
SOLETaJLe2) a (-CVPIT)®TLIL) - SQRTIDISC)I/(2.eCVSII)Y
GO TO 639
636 SOLIT,JL,1) = TEMP
SO0L(I4JL+2) = TENP
639 DO 640 IL = 1,2
SIGMX(IL) = RO(L,11oSOL{I,J0yIL) ¢ RDUL 2)0TESL)
SIGMY(IL) = RD{2,11eSOL{T,JLeTL) ¢ ROL2,2)0T{JL)
IF (SIGMX{IL} .GE. 0.0 LAND. SIGMY(IL) .GE. 0.0) GO TOD 642
TF (SIGMX(IL) oLT. 0.0 .AND. SIGMYIIL) .GT. 0.0) GO TO 644
IF (SIGMXUIL) oLT. 0.0 oAND. SIGMYIIL} .LT. 0.0) GO TO 846
IQUADIT+JL,IL) = &
GO TO 640
TOUADIT JL IL) = 1
GO TO 640

o
»
~

PARTWO

644 [QUADIT,Jt.IL) = 2
GO TO 640
646 IQUADIL, JL,IL) = 3
640 CONTINUE
IF {3 .EQ. 2) GO TO 711
IF (LPP  .EQ. 1) GO TO 715
WRITE (54712) Z(K)
T12 FORMAT{4X,4HZ = ,FB.4}
GO TO 715
T11l WRITE (5,713} ZiKe1}
T13 FORMATELHLI3X.4HZ = ,FB.4)
715 00 717 1 = 1,4
IF ILPP .EQ. 1} GO TO 719
IF (Lt .GT. 3) GO YO 721
719 WRITE {54720) L+CVSEIIeJIKsCVPIL) (3K CTSLD)
720 FORMAT(1HO, 54X, SHOUADRANT ,11//
X 26X.E13.6,2HIN, [1,4He®2 o E13.692HeNs11,3HeT , E13.6,
X 13HaTee2 - 1 = 0//}
&S YO 722
T21 MRITE (5,725) LeCVSUI)oJRoCVPLE D, IK,CTSIL}
T25 FORMATI1HO. 54X, 9HQUADRANT 117/
x 26X,E13,6,2HoM, {1 ,4H002 , E13.6,2HeM,11,3HeT , E13.6,
X 13HeToe2 — 1 a 07/}
723 WRITE(S,727)
727 FORMAT{9Xs11HTEMPERATURE 13X, 10HSOLUTION 1,8X,BHOUADRANT,7X,
1OHSOLUTION 2,8X, BHQUADRANT/
X 10X, 8HI{DEG. F)//)
D0 718 JL = 1.,NM
WRITE(Ss729)TUIL)oSOLITvJLy 1o 2QUADLELILAL),SOLETIL,2},
x TQUAD(14JL,42)
729 FORMAT{11XsF7.1013XeE13.6910Xs01, 9XeE13.6910X,11)
718 CONTINUE
T1T CONTINUE
598 CONTINUE
599 CONTINUE
G0 TO 1
10 RETURN
END
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COMPUTER OUTPUT SAMPLE PROBLEM




ANGLE-PLY THETA = 15.00 DEGREES ALL LAYERS INTACT

LAYER
NO.

THICKNESS COCRDINATES OF
OF LAYERS LAYER SURFACES

2 LAYERS (N = 2}

COEFS. OF STIFFNESS

MATRIX

COEFS. DF THERMAL EXPANSION

{ [NCHES) CINCHES ) 11046 LB./IN.SQ.) 110-6 IN./IN./DEG.F.)
K HIK) ZiK) ZiK+1) cil,l) ct1,2) Cl2,2} Cl6y1)  Cl642) Cl646) ALPHALL) ALPHA{2) ALPHALS)
1 0.5000 -0.5000 -0.0000 T7.3420 0.9320 2.7430 -1.1290 -0.1993 1.5190 4.0292 10.8700 1.9750
2 0.5000 -0.0000 ©.5000 7.3620  0.9320 2.7430  1.1290 0.1993 1.5190 4.0292 10.8700 -1.9750
~
-
A A A PRIME COEF. OF THERMAL FORCE
11046 LB.7IN.) 110-6 IN./LB.) {10-6 IN./LB.) (LB./IN./DEG.F.)
7.3420 0.9320 0. 0.1423 -0.0484 0. 0.1547  -0.0466 -0.0000 N1-T 37,4835
0.9320 2.7430 0. —0.0484 0.3810 0. =0.0466 -0.0000 N2-T 33,1780
- o. 0. 1.5190 0. 0. 0.6583 ~0.0000 0.7205 N3-T 0.
“ 8 Be B PRIME COEF. OF THERMAL MOMENT
11046 IN.} 110+0 IN.) {10-6 1/1L8.}) {LB,./DEG.F.)
=0.0000 ~0.0000 0.2822 0.0000 0.0000 -0.0378 0.0000 -0.0000 -0.3265 "~ -0.0000
-0.0000 -0.0000 0.0498 ~0.0000 0.0000 -0.0053 =0.0000 000  -0.0461 m2-1 =0.0000
0.2822 0.0498  -0.0000 -0.18%8 -0.0328 0.0000 ~0.3265 0461 0.0000 n3-7 0.9288
He
11040 IN.)
=0.0000 0.0000 0.1858
=0.0000 -0.0000 0.032¢8
0.0378 0.0053  -0.0000
0 De D PRIME
11046 LB.IN.) (1046 LB.IN.) (10-6 1/LB.IN.}
0.6118 0.0777  -0.0000 0.559 0.0684 -0.0000 1.8561 -0.5595 0.0000
0.0777 0.2286 -0.0000 0.0684 0.2269 -0.0000 -0.5595 4.5749 0.0000
-0.0000 ~0.0000 0.1266 -0.0000 -0.0000 0.1157 0.0000 0.0000 8,.6602
STRESS COEF, OF N1 COEF. OF N2 COEF. OF N6 COEF. OF TEMP.
COMPONENT {1/71IN.) 1171N.) {1/1N.) LB /IN.SQe/F,)
== LAYER 1 ==
SIGMA 1 1.0000 =0.0000 =0.7433 0.
2 ~-0.0000 1.0000 ~-0.1312 0.
[ -0.1511 -0.0213 1.0000 ~2,6548
~= LAYER 2 -~
SIGMA L 1.0000 -0.0000 0.7433 0.
2 -0.0000 1.0000 0.1312 0.
[ 0.1511 0.0213 1.9000 2.6548
z AXTAL TENSILE STRENGTH AXIAL COMPRESSIVE STRENGTH  TRANSVERSE TENSILE STRENGTH TRANSVERSE COMPRESSIVE STRENGTH
tIN) [1278) {PSI) (PSI)
-0.5000 0.150000+006 0.150000+006 0.1200004005 0.200000+005
-0.0000 0.150000+008 0.1500004006 0.120000+005 0.200000+005
SHEAR STRENGTH
[1218)
0.100000+005
0.100000+005
L
a
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CASE N1 NOTV EQUAL TO 0.0

== LAYER 1 -~
QUADRANT 1
0.188120-009aN1s#2 —0.514332~0080N1sT 0.652516-007+Tee2 - L = 0O

TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
(DEG. F)
~400.0 0.672653+005 4 -0.782016+005 2
-200.0 0.701312+005 4 -0.755994+00% 2
~100.0 0.715312+4005 4 -0.742653+005 2
0. 04729092¢00% ) ~0.7290924005 2
200.0 0.7559944005 L3 ~0.701312+005 2
400.0 0.782016+005 4 -0.672653+4008 2
QUADRANY 2
0.188120-009eNLee2 -0.514332-008eN1eT 0.652518-007eTe2 - | = 0
VEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
{DEG. F)
-400.0 0.672653+00% 4 -0.782016+005 2
-200.0 0.701312+005 4 -0.7559944005 2
~100.0 0.715312+005 S -0.762653+005 2
0. 0.729092+00% 4 -0.72909240605 2
200.0 0.7559944005 4 -0.701312+00% 2
400.0 0.782016+005 4 -0.672653+005 2
QUADRANT 3
0.187796-009eN10s2 ~0,524414-008sN1sT 0.574208-00TeTes2 -~ 1 = 0
TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
(DEG. F)
-400.0 0.672656+00%5 3 -0.784355+00% 2
-200.0 0.701493+00% ) -0.757343+00% 2
-100.0 0.715683+005 . -0, 7436084005 2
0. 0.729722400% S -0.7297224005 2
200.0 0.7573434003 4 -0.701493+005 2
400.0 0.7843550008 4 -0.672656+005 2
QUADRANT &
0.187796-009sN1lve2 ~0.524414-006sN1eT 0.574208-007eVse2 - 1 = 0
TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
(DEG. F}
-400.0 0.672656+005 3 ~0.784355400% 2
-200.0 0.701493+00% - -0.757343+005 2
-160.0 0.7156834005 . -0.7436084005 2
0. ¢.729722+005 3 ~0.7297224008 2
200.0 0.7573434005 4 -0.701493+00% 2
400.0 0.784355¢005 4 —0.6726564005 2
-~ LAYER 2 -~
QUADRANT 1
0.188120-009eN1se2 -0.514332-008oN1eT 0.652518-007eTee2 -~ 1 = 0
TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
{DEG. F)
-400.0 0.672653+005 3 -0.782016+00% 2
-200.0 0.701312+00% 3 -0.755994+00% 2
-100.0 0.7153124008 . ~0.742653+4005 2
0. 0.729092+00% 4 -0.729092+00% 2
200.0 0,755994+005 3 -0.701332+00% 2
400.0 0.782016+005 . -0.672653+005 2
QUADRANY 2
0.188120-009°N1es2 -0.514332-008*N1eT 0.652518-007Tee2 ~ 1 = 0
TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
{DEG. F)
-400.0 0.6726530005 “ -0.782016+005 2
-200.0 0.7013124005 ) -0.755994¢005 2
-100.0 0.715312¢005 . -0.742653+00% 2
0. 0.729092+005 4 -0.729092¢00% 2
200.0 0.7559944005 ) -0.701312+00% 2
400.0 0.702016+00% 4 -0.6726534005 2
QUADRANT 3
0.187798~009#N1es2 -0,524414-008eN1oT 0.574208-007e¥ee2 ~ § = 0
TEMPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
(DEG. F)
-400.0 0.672656+005 - -0.784355¢005 2
~200.0 0.7C1493+008 4 -0.757343400% 2
-100.0 0.715683+005 3 ~0.7436084005 2
0. 0.7297224003 . -0.729722¢00% 2
200.0 0.7573434005 L3 ~0.701493+00% 2
400.0 0.784335+003 0 -0.672656+008 2
QUADRANT &
0.187796-0099N1552 ~0.524414~008eN1oT 0.574208-00T7sT0e2 - 1 = 0
TENPERATURE SOLUTION 1 QUADRANT SOLUTION 2 QUADRANT
IDEG. F)
~400.0 0.672656+005 . -0.784355+005 2
-200.0 0.701493+00% 4 ~0.757343+00% 2
-100.0 0.715683+005 4 -0,743608+003 2
O. 0.729722+005 4 -0.729722+00% 2
200.0 0.757343+005% 4 -0.701493+00% 2
400.0 0.764353+00% Ly -0.672656+005 2
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APPENDIX B

A RELAXATION METHOD OF SOLUTION OF THE LONGITUDINAL
SHEAR PROBLEM FOR A DOUBLY PERIODIC REC TANGULAR ARRAY
OF ELASTIC INCLUSIONS IN AN INFINITE ELASTIC BODY

B.,1 INTRODUCTION

The solution of the problem outlined in Section 3 has been formulated
using a finite difference representation and a numerical relaxation procedure
designed for high-speed digital computer operation. The finite difference
approximations of the partial derivatives contained in Equations (55) and (56)
make use of irregular grid spacings in both coordinate directions, as indi-
cated in Figure B-1. This is an important feature of the solution in that it
permits the use of close grid spacings in regions where it is desired to
determine stresses very accurately, e.g., in areas of high stress concen-
tration where stress gradients are very high, while permitting a coarser
spacing in less critical regions. This permits a given degree of accuracy

with a minimum amount of numerical computation and computer storage

capacity.

The matrix-inclusion interface is located in the grid array in the
following manner. If a grid line in the y-direction intersects the matrix-
inclusion interface at a given point, then there must be a corresponding grid
line in the x-direction which also intersects the interface at the same point,

i.e., the intersection point is a grid node lying on the interface.
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B.2 FINITE DIFFERENCE. REPRESENTATIONS

The finite difference representations of the partial derivatives are of

the following forms:

(1) First Irregular Central Differences.

dw| 1 2 b (a2 - a3 o2

3% ayaz(a; + ay |*3 Vitl, 1 3" Vi, 5 T 21 Wi,
i, j

ow = ! + (a5, - a)) - Zw

Ay a,a, (a, + a.) 154 i, j+1 72 4 Vi, a2 i, j-1
i, j

(2) Second Irregular Central Differences.

aZW = 2 w -(a, + a))w +a,w

2 ayay(a; ¥ ay) 43 Vitl, 1 37 Wi, 1 Viol,
i, j

azw = 2 a, w -{a, + a,)w + a, w

ay2 Cayagla, ¥ ay |24 Vi, 2 7 2V 2 i, j-1
i,

(3) First Irregular Forward Differences.

ow = 1 (a.2 az) + a2 - a8
3% ayag (ag - a) |7 %9 " ) Wy 9 Viti,j T 21 Vis2,j

ij
dw _ 1 2 2 2
N D e CHPE [‘ (@0 = 22) Wy 5 *+ 210 Wy, 54

I,J

- a2
2 Vi, j+2

(4) First Irregular Backward Differences.

(Continued on next page)
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ow = 1 (2 -az)w -a.ZW +a2w

| T aga)) (a; - 25) 211 37 %y, 5 11 Vi-1,j 3 %i-2,j
1,)

oW _ 1 2 2 2 2

dy T e, 8, ), - a4)[(a12 magd Wiyt 2Vt g Wi,j-Z]
i, j

The terms 2, through a,, represent distances measured from the point (i, j)
at which the difference form is being expressed (point 0 in Figure B-2 to
surrounding points (numbered 1 through 12 in Figure B-2). Node points

5 through 8 are not actually used in the longitudinal shear problem, since
they are associated with partial derivatives of the form Bz/axay which do not
appear in the formulation. The subscripts on each displacement term, W,

identify the grid coordinates of that displacement in terms of the point (i, j).

0
J+2 1
j+1 6 2 5
J
11 3 V] 1 9
)-1 71 fa 8
-2
) 12
i-2 i-11 +1 i+2

Figure B-2. Node Identification Numbering System

B.3 NUMERICAL PROCEDURE

Central differences are used in representing the equilibrium equation,
Equation (56). In representing the boundary condition equations,
Equations (58) and (60), and the interface continuity equation, Equation (63),
it becomes necessary to use either forward or backward differences in order

to remain within the first quadrant of the fundamental region.

The fundamental region is bounded by the grid lines 3 < i < m,
3 < j < n(see Figure B-1). The computer storage array is bounded by the
grid lines 1 <i<m + 2, 1 <j<nt 2, the two additional grid lines
exterior to each side of the fundamental region being used only for indexing

purposes in the program.
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The maximum total grid array size has been established as 33 x 33
and the minimum total grid array size must be 9 x 9. Thus, if the total grid
array size is (M + 2) x (N + 2), i.e., an array with M + 2 grid lines
parallel to the y-axis and N + 2 grid lines parallel to the x-axis, where
9<(M + 2) <33, 9 < (N + 2) < 33, then the usable grid node array size is
(M-2) x (N-2) because of the indexing grid lines exterior to the fundamental

region,

For a maximum total grid array size of 33 x 33, the usable grid array
size is therefore 29 x 29, and for a minimum total grid array size of 9 x 9,

the usable grid array size is 5 x 5.

The main control program LONGSHEAR begius by reading the input
data from the punched data cards. The program first reads and stores the
physical aspects of the problem including grid node array spacing, location
of nodes which lie on the inclusion interface, the sine and cosine of the angle
which the normal to the interface at each interface node makes with the

x axis and the material properties of the inclusion and matrix. Next a code
number (MFI) is given to each node which identifies it as being located either
in the matrix (MFI=1), in the fiber (MFI=2) or on the interface (MFI=3), An-
other code (KNT) is assigned to each node indicating the type of equation to
be satisfied at that node, i.e. {equilibrium, interface continuity, or bound-
ary) and also the difference representation used for that equation, i.e., for-

ward, central, or backward. There are a total of 17 different node types.

With this information, the program generates the coefficients of the
difference representations of the equilibrium, interface, and boundary
equations., The coefficients for the interior equilibrium nodes are stored in
the two-dimensional (33, 33) arrays El through E5. The interface coeffi-
cients are stored in the single subscript (70) arrays Cl through C29 and the
boundary coefficients are stored in the single subscript (35) arrays DI
through D12,
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All of the coefficients for each node equation are stored in the
computer core, thus eliminating time consuming recalculation or tape access

during the solution process.

The remainder of the main program logic controls the flow between

subroutines to affect the desired solution.

B.4 SUPPORTING SUBROUTINES

B.4.1 SUBROUTINE RSDLS

This subroutine calculates a residual at each grid node using the
existing displacement field and the difference representation of the appro-

priate equation at each grid node.

RSDLS will be entered NRD times, calculating a new residual at each
grid node, using the displacement field obtained from subroutine RLXLS (or
the specified input displacements when RSDLS is entered the first time). The
displacements existing at each grid node and its surrounding nodes are put
into the appropriate equation for that node and a residual is computed which
represents the extent to which the existing displacements do not satisfy the
equation. In the first entry to RSDLS at the beginning of the problem, the
only displacements existing are the unit displacements along one boundary,
all other displacements being set equal to zero. The result is that the
equations are trivially satisfied at each grid node except the first row in from
the displaced boundary where residuals are calculated. These residuals
create residuals at surrounding nodes during the solution process and thus

propagate the boundary displacement throughout the array.
B. 4.2 SUBROUTINE RLXLS
Subroutine RLXLS employs a systematic relaxation procedure

(successive overrelaxation) on the residuals in the grid node array to arrive

at a set of displacements which are a solution of the difference equations.
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This subroutine is the portion of the program which solves the set of equa-

tions representing the problem, and as such is the key element in the relax-

ation technique,.

Indexing from node to node begins in the row adjacent to the displaced
boundary and progresses toward the interior of the fundamental region. This
is done to transmit the boundary displacement most rapidly to the other
nodes. At each node, the KNT code is tested to determine the type of equa-
tion to be satisfied at that node. The coefficient in the difference equation

for the node multiplying the displacement at that node is placed in CAT.

The residual existing at each node represents the extent to which the
difference equation 1s not yet saiisf{icd at that node and this error is arbi-
trarily assumed to be entirely caused by an error in displacement at that
node. A change in displacement can be calculated which will cause the
residual at the grid node to be reduced to zero, thus satisfying the equation
at that node. Actually, the change in displacement is further increased by
multiplying it by a factor OMB, in effect "overrelaxing' the residual. In
theory, * the value of OMB can vary from 0< OMB < 2. The case of OMB < 1

is termed underrelaxation and OMB> 1 is overrelaxation.

An optimum value of the relaxation factor OMB has been found to be

about 1.75 for the present solution.

After computing the desired displacement change at the node and
actually changing the displacement value, the program indexes to the eight
surrounding nodes (see Figure B-2). The residual at each of these nodes is
changed in proportion to the influence of the chénged displacement on the
equation at the node point. This amount is the ratio of the coefficient of the

changed displacement to the coefficient stored in CAT. This process is

*Young, David, '"Iterative Methods for Solving Partial Difference Equations
of Elliptic Type, " Transactions of the American Mathematical Society,
Vol 76, pp 92-111, January-June 1954,
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repeated many times throughout the array until the residual at each node is
reduced to a value small enough such that subsequent relaxations would no

longer induce a significant change in displacement at any grid node.

At the grid nodes interior to the inclusion and lying on the x = 0 or
y = 0 boundaries, (IMMI, 3) and (3, INM1), a forward difference cannot be
taken which will always have all three points interior to the inclusion. For
this reason, the usual relaxation procedure has been replaced with an
interpolation-relaxation scheme at these points. At the end of each relax-
ation cycle, the displacement at these two points is calculated using a
Fortran Function Subroutine AINTPL. This library subroutine uses all of
the displacements along the boundary interior to the inclusion and by the
method of Lagrangian interpolation, which can accommodate the irregular
grid spacing, computes a new value for the displacement. The difference
between this new displacement and the previous one is then used to relax the
residuals at all affected surrounding grid nodes. Using this method, the
final displacement value is the result of interaction with surrounding nodes
and not the result of interpolation alone. This library subroutine can be
easily replaced with any Lagrangian interpolation scheme desired if AINTPL

is not available.

Two exits are possible from Subroutine RLXLS. At the beginning of
each relax cycle, the total number of cycles already executed is compared to
the input value of NRX. When these are equal, control returns to the main
program. At the end of each relaxation cycle, the total number of cycles
already executed is compared to the input value of NRXBT, which is the
number of relaxation cycles to be executed before testing the stresses at
selected test points. When the number of relaxation cycles exceeds NRXBT,
the stresses TZX and TZY are calculated at the specified test points and
compared with the stresses existing at the end of the previous relaxation
cycle. If the sum of the squares of these stresses at all test points has
changed by an amount less than a specified percentage, read in as PCGPRX,

then control returns to the main program.
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Printed output from Subroutine RLXLS consists of an I and J node
index, displacement and residual for each node point in the array. Printout
occurs for the first (NCPRLX) number of consecutive relaxation cycles
following an exit from Subroutine RSDLS and every (NPRLX) multiple cycle
thereafter. Printout will also occur for the last relaxation cycle executed
when exit from RLXLS is a result of satisfying the condition of minimum
change in stress at the test points. At the end of each printout, a record of
the numMbr of test points which have not yet satisfied the percentage change

in stress condition, since testing began, is given.
B.4.3 SUBROUTINE STRLS

Subrouiine STRLS ic entered after Subroutines RSDLS and RLXI.S
have been executed the specified number of times., STRLS then calculates the
average shear stress existing along the boundary having the specified unit
displacement., An effective composite shear modulus is calculated by multi-
plying the average shear stress by the proper quadrant dimension and
dividing this product by the unit displacement. Each displacement in the
array is then multiplied by the ratio of the average shear stress desired to
the average shear stress developed. This yields the desired displacement
field.

Using this displacement field, Subroutine STRLS then calculates the

shear stresses T and Tz and the shear stress resultant szy =
(1'2 + TZ )1/2
zX Z

the identifying I and J indices and the displacements.

at each node of the grid array. These are printed along with

At each interface ncde, where stresses can be calculated both in the
inclusion and in the matrix, a zero is printed. The interface stresses are
then printed on a separate page along with the effective composite shear
modulus. The inclusion shear stresses, sz at L = 1 and sz at L = NIL,

cannot be calculated and are printed as zero.
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Parameter

TITLE

NR X

NRD

M

IN

NPRLX

134

B.5 INPUT PARAMETER DEFINITION

Definition

TITLE is an alphanumeric description
of the particular problem under consider-

ation (up to 72 characters).

M and N identify the boundaries of the

fundamental region (see Figure B-l).

NRX is the maximum number of times
the program will execute Subroutine
RILXLS between successive returns to

Subroutine RSDLS.

NRD is the number of times the program
will enter Subroutine RSDLS.

IM is the number of the I coordinate grid
line at which the inclusion crosses the
x-axis, i.e., at grid node (IM, 3). Grid
nodes are indexed in the program as

(I, J).

IN is the number of the J coordinate grid
line at which the inclusion crosses the

y-axis, i.e., at grid node (3, IN).

NPRLX is an integer indicating that sub-
routine RLXLS will be printed at every
integral multiple of NPRLX.




Parameter

NCPRLX

NL

NMFI

Definition

NCPRLX is an integer which indicates
the number of consecutive outputs of the
results of Subroutine RLXLS to be
printed, beginning with the first entry to
RLXLS, i.e., the first NCPRLX outputs
of Subroutine RLXTS will be printed.

NL is the number of grid nodes lying on
the inclusion interface and includes the
grid nodes referenced in the definitions of

IM and IN (see Figure B-1).

Construct a line perpendicular to the
y-axis and passing through the grid node
referenced in the definition of IN and an-
other line perpendicular to the x-axis and
passing through .the grid node referenced
in the definition of IM, These lines will

intersect at some grid node (c, d).

NMFI is the number of grid nodes con-
tained in the region exterior to the inclu-
sion and its interface node points, but
lying on or within the lines constructed

through point (c, d).
The grid nodes referenced in the defini-

tions of IM and IN are not included in the

above sum.
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Parameter Definition

Example: NMFI = 10

EXAMPLE: NMFI =10

INCLUSION INTERFACE
(c,d)

IN

NOT
INCLUDED
IN NMFI

U1

4 NOT INCLUDED
IN NMFI

X

W
W
v

Z

NKPROB NKPROB 1 indicates that Problem 1

only is to be solved.

indicates that Problem 2

1
3%}

NKPROB
only is to be solved.
indicates that both

It
w

NKPROB
Problems 1 and 2 are to be

solved (combined loading).

NTP NTP is the number of test points
(1 < NTP < 10).
Note: Choose as test points only those grid
nodes which are interior to the

matrix.

NRXBT NRXBT is the number of times the program
will execute the Subroutine RLXLS before

testing the selected test points.




Parameter

KSYM

MATRIX 1J TP

PCGPRX

MATRIX HX

MATRIX HY

GF

GM

Definition

KSYM = 0 indicates an unsymmetrical
inclusion or inclusion spacing. An inclu-
sion is unsymmetrical if, when rotated
90 degrees about its longitudinal axis, the
transformed inclusion does not occupy the

same space as the original inclusion.,

KSYM = 1 indicates that both inclusion

and spacing are symmetrical,

Mairix 15
the test points used in testing the percent

change of stress per relax,

IJTP (2N-1) = I coordinate and
IJTP (2N) = J coordinate of the Nth

test point.

PCGPRX is the maximum percent change in
stress allowed at any of the test points, per
relax, before exiting from Subroutine
RLXLS.

HX(I) is the absolute value of the distance

between grid lines I and I+1.

HY({J) is the absolute value of the distance

fo—

between grid lines J and J+

GF is the shear modulus, Gf , of the fiber
(1b/in. 3.

GM is the shear modulus, Gm, of the

matrix (1b/in. 2) .
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" Parameter
OMB

VF

MATRICES LI, LIJ

138

Definition

OMB is the relaxation factor to be used.
0 < OMB < 2, with optimum convergence

usually being obtained for OMB near 1.7.

VF is the percent fiber content by volume

of the composite.

Note: VF is input for printout purposes
only and is not used in the

calculations.

Associated with each grid node on the inter-
face of the inclusion is an L number. The
grid node referenced in the definition of IN

has an L number equal to 1, i.e., L = 1.

Proceeding clockwise along the interface
the next grid node has an L number equal
to 2, i.e., L = 2. Continuing as de-
scribed above implies that the grid node
referenced in the definition of IM has an

L number equal to NL, i.e., L = NL.

Matrices LI and LJ contain the I and J
coordinates respectively, of the grid nodes
on the interface of the inclusion where LI(N)
is the I coordinate and LJ(N) is the J
coordinate of that grid node whose L

number is equal to N, i.e., L = N.




Parameter

MATRICES COST, SINT

TZXB

TZYB

Definition

Matrices COST and SINT contain Cosen
and SinOn, respectively, where Gn is

defined as follows:

For an arbitrary grid node (I, J) on the
interface of the inclusion whose L number
is some value such that 1 < L, < NL,

9n is defined as the angle between the
normal to the inclusion surface at (I,J) and

the positive x-axis,

Thus COST (L) = Cosen
SINT (L) = SinSn
For L = 1, i,e., the grid node referenced

in the definition of IN, Gn is defined to be

90 degrees which implies

Cos 90°
Sin 90°

COST (1)
SINT (1)

i
jon

For L. = NL, i.e., the grid node refer-
enced in the definition of IM, Gn is defined
to be 0 degrees which implies

HL) = Cos 00 =

Sin 0°

-
.
(]

9]
[ams]
Z
=
55
£
i
I
2
o

TZXB is the desired average shear stress

(1b/in. 2) at infinity in the x-direction,

TZYB is the desired average shear stress

(1b/in. 2) at infinity in the y-direction.

139



Parameter Definition

MATRICES MFII, MFI1J Matrices MFII and MF1J contain the I and J
coordinates respectively of those grid nodes
referenced in the definition of NMFI. No

particular input order is required.

B.6 INPUT DATA CARD LISTING

Card No. Parameter Data Field Format
1 TITLE 1-72 12A6
2 M, N, NRX 1-3, 4-6, 7-9 I3
| NRD, IM, IN 10-12, 13-15, 16-18 13
NPRLX, NCPRLX 19-21, 22-24 13
NL, NMFI 25-27, 28-30 13
NKPROB, NTP 31-33, 34-36 13
NRXBT 37-39 13
KSYM 40-42 13
3 IJTP 1-60 13
4 PCGPRX 1-12 El2.6
5to L HX(I) 1-72 El2.6
where I = 3...M-1
NOTE: Card No. K = [M-éi] + (L + 1) where | ] represents
the greatest integer function. The maximum allowable
value of K is L + 5.
L+l to K HY(J) 1-72 E12.6

where J = 3...N-1

NOTE: Card No. K = [1\]—-'6-3—

the greatest integer

value of Kis L. + 5,
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function.

] + (L + 1) where | Jrepresents

The maximum allowable



Card No. Parameter Data Field Format

K+1 GF, GM 1-24 El2.6
OMB, VF 25-48 El2,6
. K+2toJ Li(L), LJ(L) 1-72 13
. where L = 1..,.NL
J+l to I COST(L), SINT(L) 1-72 El12.6
- where L = 1,..NL
. I+1 TZXB, TZYB 1-24 El2.6
I+2 to LC MFII(K), MFIJ(K) 1-72 I3

where K = 1..,.NMFI

B.7 OUTPUT OF PROGRAM

(1) Repeated input data.
(2) Dimensions of first quadrant of the fundamental region, A and B,

where:

[

M-

and
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(3) If NKPROB = 1 or 2:

(a) Results of the kth entry into Subroutine RSDLS
(b) Results of Subroutine RLXLS, NCPRLX consecutive times,

every integral multiple of NPRLX, and the last execution.

NOTE: (a) and (b) are printed consecutively for each value
of k where k = 1...NRD. Output includes the I
and J coordinate of each node of the grid array
and the corresponding displacements and residuals

at each grid node.

If NKPROB = 1 and k = 1, the residuals computed in
Subroutine RSDLS will be zero everywhere except at those
grid nodes in the M-1 column at J =4... N-1.

If NKPROB = 2 andk = 1, the residuals computed in
Subroutine RSDLS will be zero everywhere except at those

grid nodes in the N-1 row at I1=4...M-1.

(c) Results of Subroutine STRLS for the particular problem

solved, i.e., Problem 1 or Problem 2.

(4) If NKPROB = 3:

Results of Subroutine STRLS for Problems 1 and 2 combined.

Output will include:

(a)

(b)

(c)

(d)

The I and J coordinates of each grid node and its correspond-
ing displacement w.

The shear stress components TZX and TZY and the resultant
shear stress TZXY at each interior and boundary node.

The shear stress components and the resultant shear stress
at each interface node for both filament and matrix.

GX and GY, which are defined as the effective composite
shear moduli in the x and y coordinate directions,

respectively.




B.8 SAMPLE PROBLEM

The sample solution presented at the end of this appendix is that of the

elliptical inclusion array shown in the upper left of Figure 26.

On the first page of output is printed the title ELLIPTICAL INCLU-
SION and the other input data. The grid node array size of 15 by 15 is the
number of grid lines in the fundamental area. The computer solution uses
two grid lines outside this area and so M and N are input as 17, The quad -
rant dimensions A and B are merely the sum of the distances between grid
lines in the x and y directions respectively. The ellipse represented has a
© minor axes ratio of 2:1 and a fiber volume of 70 percent. The input
values of matrix and inclusion shear moduius, relaxation factor, imposed

loads, and fiber volume are also listed.,

Following this are the I and J coordinates of the ten test points at
which the change in stress per relaxation cycle is to be calculated. The
spacing between each grid line is listed under GRID SPACING. First, the
horizontal spacing HX (I) is given. The distance shown for I = 3 is the
horizontal distance from grid line 3 to grid line 4. Similarly, HY (J) is the

vertical grid spacing.

The first entry into Subroutine RSDLS results in zero residuals at all
grid nodes except those adjacent to the right boundary which is given a unit
10

. As the

effect of these residuals spreads throughout the array during the relaxation

displacement. In this row, the residuals are equal to 0,4958 x 10
process, they become progressively smaller,

The relaxation process was halted after 110 relaxation cycles when
all 10 test points recorded a change in stress of less than 0,05 percent per
relaxation cycle, At this point, the largest residual in the entire array had

an exponent of 105. This represents a decrease of 5 orders of magnitude.

The interior and boundary stresses are printed, followed by the

interface stresses. The stress concentration factor (as shown in Figure 26)
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is determined by the matrix interface stressatl = 11, J = 3, i.e,,

3921, 1 psi, divided\. by the imposed shear stress of 1000 psi, i.e.,

SCF = 3.921. Next is printed the effective composite shear modulus in

the x direction of 0,869 x 106. The shear modulus in the y direction was not
calculated since the example problem shown involved an imposed shear stress
along the x = a boundary only; Problem 2, i.e., an imposed shear stress

along the y = b boundary only, was not solved for in this example.
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LONGITUDINAL SHEAR PROGRAM

READ INPUT DATA END - IF NO MORE

INPUT DATA
PRESENT
NO NO SET KPROB = 1 FOR NKPROB = 1 OR 3
ISkaR =07 SET KPROB = 2 FOR NKPROB = 2
YES
PROVIDE INITIAL DISPLACEMENT
OF THE PROPER BOUNDARY m
KQR = 1 I CALCULATE QUADRANT DIMENSIONS A, B]
v
—DBALL SUBROUTINE RSDLS | ! | CLASSIFY GRID NODES
WRITE NODAL POINT COORDINATES, CALCULATE COEFFICIENTS FOR iNTERIOR,
UISPLACEMEN | 5 AND RE SIDUALS BOUNDARY Al INTERFACE RGDES
| CALL SUBROUTINE RLXLS | f [ WRITE INPUT DATA AND QUADRANT Dxmsnswus—J

BALL SUBROUTINE STRLS I;
YES JIS NKPROB = 3'." NO

SUBROUTINE RSDLS "~
- NO —1 7 |NO NRDS = 0
START IS KPROB = 2 IS KSYM = 1 ? R
YES w VES

CALCULATE RESIDUAL REW

INVERT DISPLACEMENTS
AT EACH GRID NODE

OBTAINED FOR KPROB = 1

LCALL SUBROUTINE STRLS I
SUBROUTINE RLXLS -

‘ START , KPROB = 3

N— S *

COMBINE NODAL POINT

DISPLACEMENTS OF
AT EACH NODE IN ARRAY - CALCULATE PROBLEMS 1 AND 2
NEW W DISPLACEMENT AND RELAX 1
RESIDUAL AT SURROUNDING NODES
NO T LCALL SUBROUTINE STRLS I f
IS NUMBER OF RELAX | . | TEST CHANGE IN STRESS AT TEST POINTS T
CYCLES COMPLETED O WHEN NRXS > NRXBT. IS CHANGE IN STRESS
>NRX ? AT ALL TEST POINTS LESS THAN PCGPRX?
YES w YES

WRITE NODAL POINT COORDINATES,
DISPLACEMENTS AND RESIDUALS

RETURN
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LONGITUDINAL SHEAR PROGRAM CONTINUED

KPROB = 1

SUBROUTINE STRLS

< START ’

KPROB = 3

|

CALCULATE THE AVERAGE
SHEAR STRESS Ty ALONG

THE RIGHT BOUNDARY

:

CALCULATE THE _
EFFECTIVE COMPOSITE
SHEAR MODULUS, Gx

:

ADJUST AND
STORE DISPLACEMENTS
W IN WSAVE

A 4
IS NKPROB =3 ?

NO

KPROB = 2

A 4

CALCULATE THE AVERAGE
SHEAR STRESS Tiy ALONG

THE UPPER BOUNDARY

I

CALCULATE THE
EFFECTIVE COMPOSITE
SHEAR MODULUS, Gy

I

ADJUST DISPLACEMENTS
W AND LEAVE IN
W STORAGE

y

IS NKPROB =3 ?

YES YES
RETURN

NO
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v

CALCULATE STRESSES

szl sz/ szy

AT ALL GRID NODES

.

PRINT DISPLACEMENTS,
STRESSES, Gx AND Gy

RETURN




FORTRAN IV COMPUTER LISTING



FORTHAN 4 PROGRAM

ving
unoR
npu3
unte
6nos
6§
gy
[ET
rhog
nig
iy
w1
11y
a0l
vi1§
16
017
‘118
19
wn2e
"n2y
n2z
nn2y
£p24
028
n2e
o7
La2e
029
ralo
ne3y
32
ou3s
n3a
N5
W36
w37
a3R
W3y
indg
ngay
“pa2
neay
undd
n45
undg
inay
£a4g
G4y
HnsSg
ELL-BY
1152
unsy
ip5e
058
inse
0187

LUNGSHEAR

CLONGSHEAK

anoaao

FORTHAN 4 PROGRAM

e0nss
59
060
raey
unee
“nes
“n64
upss
tnes
067
0068
1069
1970
"o71
un72
73
0n7e
0075
00’6
a7y
4078
anze
9089
0n8y
6082
0083
2084
0085
0ndg
8087
088
Hn89
¢a90
0091
une2
ng93
0094
0n9s
0e9s
0097
0098
onee
0100
8101
0102
9103
0104
0105
0106
0107
€108
0109
6110
0111
0112
0113
0114

COMMON W, WL s ASAVE y W1, N15, W2, W28, T7X, T2Y,TZ5B. 170, TZYEs, 12YAS,
LTZXM, T2ZYMLTZXF, T2YF s REW, X, HY L OMR, GF 4 GV, 6K, GY.F1,52,C061,SINT
2CAT,01.02,C$,€4,C5,C6,07,08,L9,010,C11,017,C1%,C14.C15,C16.817,
3C18,C19,C20,C21,€22,02%,024,C25,026,C27,02R,050,P1,07,1'5,04,05,
406,V7,08,00,010,n11,D12,681,E2.+3,F4,E5,

SMLMML, M2, M3, MP L, MP2, 8, NMYL, NM2 N3 NP Y NP2, 1N, THMT, INM2, INMS,
6TNPL, INF2, TNPY, IM, TMHL, [MM2, IMM3, THPL, Thbe, T3, 5, NLMT, VK2,
ZLNGAI LU L AT, KNAT ,NMFL ME LY MF I, KNT , KFRGE,1JTr, MFLT,

BNRX, N0, KX S, NADS, NPHLY NCFRLX . NTR, NPT, T2X¥1, t7XY2, PCGPRX, T2XY
9,NRART,NEPROB, A, K, FPY

DIMENSION Wi3X,33),REW(33,33), TZ%(33,3%),T7Y(2%,23),F1133,53),
1E2(53,35),E5(33,35),F4¢33,33),E5¢33,33),KNT(22,33),LN(23,33),
2C29033,33) , MFT (33, 33}, wSAVE (33,33, TZXvr33,33),
3C6¢70),C7¢70),C8(70),CO(70),CU0(/0),CI3(70), 12(77),01%¢7C),C14¢70
4),C150700,C16(70),C17070),G18(70),CL9(". 3,020¢70),021(72),822(76),
B5C23070),C244703,625(70),626¢70),027¢70),C2R(7°3,r0RTI7 1,SINTE7P)
6,01(35),02¢39),03(35),n4(35),D9¢85),06(5),Nn7¢35),0R(38),09125),
THXL35) oMY L353) , WLETA),LYCT03,Ld070),CL070),02¢,0),C307 1,Ca(7M),
BCS5(70),010035),011(353,012¢35),77xM70),TZvMI 1), T72XF (77 ),T2¥F(70)
9, TJTRE20), TIXYIC10),TZYY2(10), 46 1T(90) , wFIJ(9 ")

DIMENSION TITLE(12)

A RELAXATION QOLUTION OF THE LONGTTUOINSL S4F &R PROBLEM FON &
DOUHLY PERIODIC WICTANGULAR ARRAY OF ELpSTIC INCLUSIONS 1N aN
INFINITE ELASTTC 300DY

1 DO 102 1=1,33
D0 102 »=1,33
W(I.J)=0.0
REW(I,J)=0.8
TZxtI.0=20.0
TIV(I,JN1=0.0
WSAVE(I,J) 2 g.¢

102 CONTINUE

. GX = 0.0
aY = C.0

KOR = 0

101 READ (8,208) TITLI

REAU (8,201) M, N, NRX,NRD,IM, IN,NPRLX.NCPRLY, NI ,NuF T, NKFHGE, NTP
1,NRXAT,KSYM
IF (NXPROB ,EQ. ?) GO T1O 62
KPRUB = 1
GO T0 61
62 KPROB = 2
61 NTPZaNTRe2
REAL 18,201) (TJT? (IJ).TJ=1,NTPZ )
DO 44 IJ=1,10
TIXYL(IJ)z0,
44 TZXY2(IJ)=g,
REAU(H,202) PCGRRY
HHLEM=-1
MM23M=-2
“M3EM-3
NM1aN-1
NM2EN-2
NM3sN-3

LONGSHEAR

HP1sMey
MP2EM+2
NP1ENel
NP2EN2
NLML=NL-1
NLMZ2EN| -2
IMPS=IM+3
IMPR=[M+2
IMPl=aIMel
IMML=IM~1
IMM2=In-2
IMMISIN-3
INPI=IN+3
INP2=IN+2
INPL=IN+L
INMLIzIN-1
INM2=IN-2
INHSEIN-3
READ (8:202) (HX(I)sIz3,MM1 )
READ (8,202) (HY(J)rJ33,NM1)
Az0,0
Ax0.0
DO 42 I=33,MM1
42 AzAeHX(I)
DO 43 J=3,NM1
43 BageHY(J)
HX (M) ZHX (HML)
HX{MP1)sHX(HM2)
HY (N)SHY (NMY)
HY(NPLIZHY (NM2)
HX(2)BHX(3)
HX(1)2HX(4)
HY(2)ZTHY(3)
HY (1) =AY (&)
READ {8,202) &F.GM.0MB, VF
READ (8,201) ({LTCL),La(LY}, L31, NL)
READ (8,202) ((COST(L),SINT(L)),Lsi,N)
REAL (B,202) vZwe,TZYB
D0 $3 Ia3,M
DO 33 J2INPL.N
33 MFIC(ILJ)=1
DO 34 IxIHPi.M
DO 34 Jz3,IN
34 HFT(I, 4231
DO 35 Is3.IM
00 35 J=3,IN
38 MFI{I, )2
DO 37 Lzi.NL
IsLI(L)
JeLJdtl)
7 MFI{I.J)=3
DO 12 L=1,NL
IsLltL)
JELJOL)Y
LN(I, 0)mL
2 CONTINUE
DO 20 I=4.MN1

“

I
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FORTRAN 4 PROGRAM

115
0116
n1z
0118
0119
0120
0121
n22
0123
0124
n123
0126
127
U128
06129
130
n131
w132
1133
134
r13s
0136
0137
1138
139
ny4g
ey
1142
143
144
n145
uy4s
0147
1148
149
0150
a5y
152
sy
1o
1155
156
157
n58
159
u180
w16y
n162
U168
0164
0165
166
0167
0168
niap
01/
nm7n

FORTHAN 4 PROGRAM

nyrez
DRRA}
ny74
275
IRETY
n7y
u;78
79
A18g
[RE3S
182
183
V184
185
186
0147
w188
n189
1190
J191
Wy v
1193
w194
n193%
196
197
n198
199
wang
0201
0202
0203
0204
0208
asne
007
Geng
1269
210
241
4012
naty
v2le
0215
16
1217
1218
0219
0220
vozt
222
w22y
V224
0225
n22e
ap27
1228
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2

-

N

2

2

w

2

-

-

4

-

36

LONGSHE AR

DO 20 J=4.NM1
KNT{I.J)=2
CONTINUE

DO 21 J=1,NP2
KNT(1,0)=1
KNT(2,0)=1
KNT(MP1,J)=1
KNT{MP2,J)=1
CONTINUE

DO 22 I=3.M
KNT(I,1)31
KNT(I,2)=1
KNTLI,NPL)=1

KNT(IsNP2)=1

CONTINUE

DO 23 Jz4,NM1

KNT{3,J)28

KNT (M, J)=G

CONTINUE

DO 24 I=4,Mn1

KNT(I,3)=210

KNT{I,N)=11

CONTINUE

KNT(3,32212

KNT(3,N)=13

KNT(M,N})z14

KNT{M,3)=156

KNT{IMM1,.3)s1g

KNT(3,INM1) 217

DO 25 Lx3.NuMy

I=Ll(L)

JELJiLy

KNT{1.J)23

CONTINUE

Tsi L2}

JELJL1)

KNT(I, )56

1=L1(2)

JrLJt2)

KNT{TsJ) =4

T=LLl(NLML)

JELJINLML)

KNT(I,J}=5

TsLL(NL)

JaLJ(NL)

KNT(T, 0227

DO 4 1=4,MM)

DO 4 J=4,NML

ALzHXCID

A2zHY (4D

AZaRX(I-1)

AdzHY{U-1)

ELCL, 3150 (-2.0/7¢A10A3))I*(=2.0/(A20A4)))aGH
E2(I.JIE(2,0/(A10(AL+ATI))GH
E3(1,J)=(2,0/(A2¢(A2+A4)))eGH
E4(Lid)=(2.0/(A3e(AL+AT))INGM
ES(L,J1e{2,0/(A4e(A20A4)))eGH

LONGSHE AR

CONTINUE

DO 41 I=4,14

DO 41 J=4,1IN

AL=NX(D)

A2zRY ()

AZzHX(I-1)

AdzHY(J-1)

EL(L, )20 (-2.0/CA1eA3) )¢ (=2,0/(A20A8)))eGF
E2(1,J15(2,0/ (A etA1+A3)))0GF
E3(L,J)=(2.0/(A2%(22+A4)))+GF

E4CL JI=02,0/(A30 (AL AT) ) 2 oGF
FS(L,0)3(2,0/(Ade(A2+A4)))sGF

REAU (8,201} ((MFIT(X} , MFIJ(K)} Key,NMF])
DO 36 Kz1,NMFT

T = MEIL(KX)

J o= MFIJ(K)Y

AL=HMX(I}

A2zMY(J)

AJ=HX(I~-1)

AdzHYiU-1)
EL(LaU)zCl-2.07¢ALeA3)) (=2, 0/(a22A4)))eGH
E2¢L,)3(2,0/(ALe(AL+ATI)IeGH
E3(L,J)=(2,0/(A29(A2+A4)) ) eGM
E4(I1,J)%(2,0/(A30(AL+ATIY)eGN
ES(1,J)2(2,0/ (A4 (A2+A4)))GH
MFI(I.J)=1

B0 7 L=1.NL

IzLlcL)

JeLJ(L)

ALzHX(T)

IYELAANE

AJzmAX(I-1)

AdzrY(J-1)

AGEALeHX(Iel)

ALDBAZSHY(je1y

AL1EASeHX({T=?)

AL2EAdeHY (=2

A1=zCOSTIL)I/(AQ-AT)
B2sDINTLLI/(ALDeA2)
A32COSTIL)I/{A{1=a)
BASINTIL)/(A12-4)
CLIL)IS(GMO{ADee2-21922)4R1)/(A1eAQ)
C2(L)M(GMe(ALneeP-a200D)eB2)/(A0a1D)
C3(LITLGFo (AL ee2-a3000)0b3)/ (A1)
CA(LIB{LUF o (AL e -AdeeD)0Ha)/(AA®A12)
CTLL)3-(GMeAQ4RL) /41
CBILI®=-(GMeALNIB2) /A2
CO(LI®-(GFeAL10a3) /A3
Cl0(L)s=(LF oA 20R4)I /A4
CLILL)IN(GMoAL4RY) 7MY
C12(L)Im(GMeA24A2) /AL0
CL3tL)s(GreAlen3) /Al
Cl4a(L)s(GFeAdR4) /L2

CS(L)I(2.004F eA303TM/A1 ]
CO(LIB2.00C5 (L)
CL1S(LIa(4,09GFeaAdeR4)/ALD
cratLInCidLdz2,0




FORTHAN 4 PROGRAM

LONGSHEAR

0229 CL7(L)IS(GFo(A12002-A4942))/CAd0120(A12-A4))
8230 CLBCL)IZ(GMe(A10002-A2042)1)7(A20A1N0{ALD-A2))
9231 C19(LI=(-GMeA10)/(A20(aLN-A2))
0232 C20(L)=(-GFoAy2)/(Ad40(a27-24))
0233 C21UL)IT(GHOAR)/(ALNO(A10-A2)}
0234 C22{L)2(GFeAd)/(A120(A12-4A4))
n235 C23(L)a(GFe(A11002-A3042))/(A3¢a116(ALI-A3))
1236 C24(L)EiGHI(AGaoRAL D)1/ (ALOAGY(AD~AL))
n237 C5(L)I=(~GMeAg}/(ALs(AT-AL))
n238 C26(L)3(-GFoA11)/(A30(A11-A3))
u239 CZ?(L):(GNtA!)/(A?t(l9-l1l)
n2eg C28(L)S(GF*A3)/(AL1%(A11-A3))
1241 C29(L)=~4.00C13¢(L)
0242 7 CONTINUE
9243 C POINTS 16 AND 17
V244 AL=nX{INM])
1245 AJaHX(THH2)
0246 A9=MXLIM)+AL
naey ALLFHXCIMM3) *aA3
H248 A2=MY(INM1)
n249 AdzHY (INM2)
a2%0 ALOBHY (IN)+A2
0251 AL12=HY CINHI) ¢a s
0252 L=NLet
0253 LI(L)=IMNY
0254 LJ(L)=3
V255 CZS(L)H((GFO(AIIO'?-AS.O?))I(AS.Ail‘(A]J'Aﬁ)))0(-1.\?)
1256 C24(LI3C(GHO(AD802-A1402) )/ (ALOAYS(A9=A) ) ) e(-1,0)
0257 C25(L)=( GMeAQ)/(a10(AG~a1))
258 C26(L)*( GFoA1)/(a30(211-43))
0259 C27¢L)I3C(GMOALI /(A CAG=A1)) (=1 D)
0260 C2BELIS((GFeAT)/(A110(A11-A3)))e(~1,0)
0261 LaNL+2
1262 LI(L)=3
1263 LJCLI=INML
G264 CL2iL=l(Crels12402044402))/(A40A12¢{A127A4)))0(-1,0)
n265 cls(L)=((G«a(uau?-Aan))/(lZoAint(Am-Az)))o(-x.:)
n2he CilodLrzq LMsAfpI/(ac tasn neis
$267 C20(L)3( GFoat2)/(adelal2-a4))
0258 C21ULI3CIGHOAD) /(41090 CALA-A2)) )0 (-1.0)
0269 C22(L)=((GFeA4)/(4120CA12-A4)))a(=1.0)
nazo A2=HY(3)
0271 ALO=HY{4)+A2
nzr2 AdzHY(NNL)
2273 ALZ2EHY{NN2)vA4
274 PO 8 l=4,IM
0275 DLCI)={=(A10%0242002)/(a20A200(AL0-42)))0GF
0276 D2(IY2CAL0/(A20(ALAA2)))OGF
0277 DICLIR(=A2/(A100(4a10~A2)))*GF
u278 D4(IIZ((AL2002-24002)/(A4OA12¢(A12-A4)) ) eGn
279 DS(LIE(=A12/(ade(A12-A4}))aGN
289 DOCL)IR(A4/(AL2¢(AL2°A4)))OGM
4281 8 CONTINUE
u282 D0 B1 I=IMP1.,mMy
1283 DLCLIA(~(AL10902-A2692)/(A20AL0¢(A10-42)))eGH
0284 D2CL)3{AL0/(A29(A10~42)))eGM
17285 DICI)8(=A2/(A100(A10-4A2))) oGH
FORTRAN 4 PROGRAM LONGSHEAR
22868 DACLIN(CALR902-44042)/(A4OAL120(A12-A4)))¢GH
3287 DS(I)2(-AL2/(A4e(AL2-A4}))eGH
0288 DECIIE(AG/CAL20¢AL2"A4) )} 4GN
0289 81 CONTINUE
2% AladX(3)
0291 A9xEnX{d4)eal
0292 AZSHX(MM1)
0293 ALITHX(MM2)«AS
294 DO ¥ Jwd,IN
v2%s D7(J)2C-CA0NO2-A1002)/(A16AO0(AQ-R1) )] 0GF
0296 DB(JIE(AG/(ALa(A9-AL)))oGF
297 DOCJIR(=AL/LAGI(AD-A1)) ) eGF
0298 D10(JI=((A11v029A3092)/(A36AL10(AL1-A3)))eCN
A299 D11(JI2(-A21/(A3¢(A11-43)))eGH
0300 D12(J)%(AS/(AL10(AL11~AT)))oGN
030y 9 CONTINUE
0302 DO 91 JEINPL,NMY
0303 D7(J)R{=(A9842-43002)/(A19AG${AG-A1)))eGH
0304 DB(JIZ(AI/ (ALa(A9-AL)) ) oGM
0305 DILIIZ( AL/ CAQOIAY~ALT ) I oGH
0306 D10(JI2((A110024A3402)/(ASeAL10(A11-A31))eGH
0307 D11(J)a{-A11/(ASe(A21-43)))9GH
0308 D12{ I {A3/{Ag10(A11-AT)))oGH
0309 91 CONTINUE
310 HRITE (5,206) TIT_EsMM2oNM2. A-B,GMeGF OMBy T2XA, T7YRSVF
8311 WRITE (5,207) (2JTP(IJ),TJ31.NTP2)
0322 WRITE (¢5,209) ((I,HX(I)),I=3,Mn1)
2313 WRITE (5,210) ((J,HY(J)), Js3,NH1)
0314 3 NRxS=0
0318 NRDS=zQ
0316 10 IF (NRDS-NRD) 5,6,6
LR ¥ 5 IF (KPROB .EQ, 2) GO 70 %2
[53V.) IF (KQR .NE. 8) GI TO 63
0319 W1S%1.0
0320 DO 30 J=3,N
0321 30 WM, J)aN1S
0322 KQR = 3
0323 GO TO 63
0324 52 IF (KOR .NE. g) G TO 63
0323 W2ss31.0
0325 D0 104 Isi,™
0327 DO 104 JUsi,N
0328 W{I,J)a0.0
08329 REW(I,J)=0.0
0339 104 CONTINUE
0334 DO 31 I=3.M
0332 31 W(I.NYaw2s
0333 KQR = 3
0334 63 CALL RSOLS
0335 NRDSENRDS 1
0338 WRITE(S,203) NRDS,KPROR
0337 WRITE(5,204) )
2339 WRITE (5,208) (C0L.J,N(I,J),RENCT, U0}, 23,N),Ix3, M)
0339 00 46 IJsi,ie
0349 48 TIXY1(IJ)s0,
0341 CALL RLXLS
0342 ao 10 10
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0343 6 CALL STRLS
0344 IF (NKPROY «NE. 3) GO TO 1
0345 IF (KPROB .EQ, 2) GO Tn 44
0346 IF (KSYM .gQ. 1) 30 TO 65
0347 XKPROB = 2
0348 KOR = 0
0349 NRDS = 0
0350 NRXS = D
6351 60 To 10
0352 65 DO 66 1 = 3.M
0353 D0 66 J = 3sN
0354 66 W(IsJ) = WSAVE(J.1I/FPY
0355 XPROB = 2
0356 CALL STRLS
0357 64 KPROB = 3
0358 PO 67 1 = 3.M
0359 D0 67 J = 3«N
D360 87 W{IsJd) = WCIs ) + WSAVE(T, )
03631 CALL STRLS
3362 60 10 1
0363 201 FORMAT (2413)
0364 202 FORMAT (6E£12.8)
0365 203 FORMAT (1H1,49X,21HRESULTS OF RESID NO. ,I2,5X,11HPRUBLEM ND.,T3/)
0386 204 FORMAT (1H 57/,6X,1HTI,3X,1HJ, 18X, 1HH, 1RX, AHRESINUAL,///)
u367 205 FORMAT (iH ,3x,274,6X,2E20.8)
0368 206 FORMAT (1H1,30X,53HL O N G T T u D I N AL SHEAR ANAL
0369 1Y S TS ,/0/,1248,/7/,5%5X,10WINPYUT DATAL///,
0370 245H GRIU NODE ARRAY SIZE 5,12,4H BY »12,7/,
0371 3214 QUADRANT DIMENSIONS ,6X,3HA 3,1F6,3,6X,3H8 2,1F6.3. 14
0372 4454 MATRIX SHEAR 4NDULUS S £,1F12,4, 1
0373 5454 INCLUSION SWEAR MODuLus  Psl 1£12.4, 14,
0374 645H RELAXATION FAZTOR  (OMEGA BAR) 2,1F6.3, 14,
n37s 7454 R LOADING AT INFINITY (PSI) =,1FS.2, 11
376 845H ZAR LOADING AT INFINITY (FSI) =,1F9.2, 14
0377 945H PERCENT FIRER BY VOLUME w,1F9.2 ?
0378 207 FORMAT (1H ,//,244 TEST POINT CNORDINATES ,//,6%,181.3%,104,7/,
4379 1(3x,214))
0380 208 FORMAT (12A6)
0381 209 FORMAT (1H14////7,14H  GRTD SPACING +//,6X,1HI.RX,SHHX(T)s/7/,
1382 1(3x, T4, 8%,F12,A))
0383 210 FORMAT (1H ,/7/,6%,1HJ,BX.5HHY (L), /7,
usB4 1(3X,14.8X.F12,8))
0385 END

FORTHAN 4 PROGRAM RSDLS
0n0y CRSDLS
Go02 SUBROUTINE RSnLS
0003 COMMON WoWLsWSAVF, W1, W1S, W2, W28, T2X,T2Y,TZXB, TZYR, TZXBS, T2VaS,
0004 L1TZXMa T2YM, TIXF, TZYF,REW, HX, HY, "M8, GF ,GM,GX, GY.F1,F7,C0ST,SINT,
0905 2CAT,C1,C2,C8.C4,C5,C6,C7,C8,C9,¢10,C11,C12,€13,C14,C15,016,C17,
0006 3€18,C19,C20,C21,C22,C23,C24,025,026,027,C28,C29,n1,02,03.04,05,
007 4D6,U7,D8,09,010,N11,012,F1,E2,E3,E4,E5,
0008 SM.MM1, HM2, MN3 , MPY P2k, NM1,NM2 NM3, NPy NP2, TV, INML, INM2, ENuy,
0009 GINPL.INP2, INPX, TM, TMM1, IMM2, IMM, TMPL, THP2, TMEX, NL NLM1, NLHZ,
0010 LN LI Lo LAT . KNAT,NKFI, MFIJ,MF L, XNT,KPROB, IJTr, MF 1T,
011 BNRX,NRD,NRXS,NRDS,NPRLY ,NCPRLX,NTP, NPT, TZXY1, T7XY2, CGPRX, TZXY
0012 DIMENSION W(33,33), REW(33,33),T2X(33,31),TZY(33,33),E1033,333,
401y 1E2(83,38),E3(33,33),E4(33,33),E5¢33,33), KNTI3S,3%),LNE33.3Y),
0014 2€29¢33,331,MFT(33,33),wSAVE(33.33),T2Xxv (33,33,
0015 366(70),C7(70),C8(70},C9(70),C10¢/0),C11(702,612¢72),C1X(70),C14(70
ng1e 4),C15(70),€16(70),C17¢(70),C18(70),C19(70),C20070),C21(712,C22(70),
0917 5023(70),C24(70),C25(70),C26(70),C27(70),C2R(70y,r0ST(71).SINT(T0)
0018 6,01(353,02(85),D3(35),04¢35),0%(35),06(35),07¢35),08(3%):09(35),
0n19 THXC35 ) HY(35),WLE70),LT(70),LU(70),C1(20),C2(77),C3(72),L4(70),
V020 BCSC70),D10¢35),011(35),012(35). TZxM(70),TZYM(IN), TZXFLTIILT2YFETN)
0021 9,IJTP(20),TIXY1(10),T2XY2(10), MFIT(90),MF1I(9™)
0n22 DO 3 I=4,MM1l
[1F3 ] DO S Ju4,NML
to24 REW(ISJ)®E1CT, 0) et Jrer2Cl udoN(Isl, JI*EICT, ) entl i u~1)vEa(I, )4
1n2s 1 WII-1,0)+€8(T, ) eI, 0-1)
0026 3 CONTINUE
0n27 NLM2zNL -2
0028 DO 4 Lad.nLH2
no2¢ IsLLlL)
2030 JrLutL)
0031 REWCTsJ)2(C3( ) eCatL)*CI(LI+C2{L I oMIL, DeCT LY OMII*1, 1) ¢CBILI oW
o032 1 (1, J+2)0CO(_ deNtT-1,J3*CLOCL) oW{T, d=1) el 1L (L) ou(T+2,0)+C12
na33 H (LIOW(T,0e2)eCt3LdonCI-2,0)oC4eL)0h( T, u"2)
0034 4 CONTINUE
0035 60 T0 (1,2),KPROB
0038 100 8 Juld,N
0o37 REW(3.J)w0.0
0038 8 REW(M,J)=0,0
0nde DO 5 I=d.mMMi
0040 REW(I,3)001CTyew(I,3)+n2(I2oM (I, 4)+DS(TION(T, N}
0041 REWCILN)2D4(I) oW (I, NI *DS (D) on (L, NM1I*DACL) (i, NuR)
0042 S CONTINUE
Op4s JeLJ(2y
an4se REWC40 JIR(CLI2)eC2(2)+C5(2)9CA(2))0M(4, 1)eCT (P oulB, 0)COIZ 0Nl4,
nn4s 1 Jo114C29(2)eW(3, 11oC10(2)aM4,0m11+C11 () 0u(6,J1+C12(2)0wt4d,
0046 2 Je23+Clat2)enta,u-2)
00d7 LaNL-1
0048 IsLI(L)
0n49 RENCI,4)2(CLL )02 oC3 LI «CISLYISMIT, 4)eCTiL)aMI"1, 4D CaILION
fe50 1 CL.5)eCO( L 0W(I~1,4)=CABCL)em(I,330C11¢1)ou(Te2,4)+CLP(L)ewW
0053 H (la6)eCyItLdoncI-2,4)
bn52 REWCIM, S)(C23(NL)«CR4(NL) Y ONCIM, 3)I+C2H(NLYORITHe1,3)er20(NL) 0w
0053 1 (IM=1,3)9C27(NL)eW(IMe2,3)+C28(NL)ON(IM-7,})
0n%4 TaIMML
0053 LaNLel
4056 REW(I,3)uC28(L tow(I,3)¢(023CL)»C24(L))owtley, ) er2RILIoW(I~,})
6057 1 CC2BCLION(To2,3)4C27(LION(T3, )
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0p58 G0 10 6
0059 2 D0 9 Ix3.M
0080 REW(I3)=0,0
0061 9 REW(I,N220,0
6062 DO 7 Jz4,NM3
1963 REW(3,0)207(J)0W(3,JI+NB(J)*H(4, 11+DI(II W (5, )
0064 REW{M, J} 20100 5) oW(MyJ) D110 I €M {MNIL JI+D12C I} eNIMHN2, J)
0065 7 CONTINUE
0066 J2LJ(2)
0067 REW(4,0)2(C1{2)6C2(2I+06(2)+CAI2))oW{A, J)eCT (20U (5,JI+CBL2) enLs,
0068 1 J41)+C2902)0H (3, J)+C10(210W(4,U1)5C11( D 0W(62J)+C12(2) 00,
0069 2 J+2)4C14(2) 60 (4, 4-2)
0670 LaNL-1
0071 I=LI(L)
0072 REW(I,4)3(CLOL)&C2CLI+CI(LI*CLO(LII*WIT, 4)eCT( ) ow(I+1.4)+CBILI oW
0073 1 CL1,5)4Co L) #W{I~1,4)-CL5( )eW(I,3)+CL1(LIon(I*+2,4)+C12(L)ow
0074 (1,6)4C13CL)oN(I-2,4) .
0075 REH(J.IN)*(CP](I)‘C!S(I))‘tl(3-IN)bCi‘i(l)’H(S.INM)*CEGH)'U(J;!N'I
oe?s 1 14C2141) e W (3, IN*2)+C22(1) e (3, IN-2)
0077 JTINML
0p78 LENL*2 #
0079 REW{3,J)5C200 ) en(3,0)+(C17 LISC18(LII W3, Je23+022(L) 0w (3, Y1)
0o8g 1 *CITCLION(3,0¢2)+C20CLIIH(3,U+3)
0081 6 RETURN
0082 END
FORTRAN 4 PROGRAM RLXLS
0801 CRLXLS
0002 SUBROUTINE RLXLS
0003 COMMON W, WL, WSAVE, W1, WIS, W2, W25,T7X,TZY,TZXB. T7YR, TZXBS, TZYBS,
0004 L1TZXM, TZYM, TIXF, T2YF,REW, KX, HY, "HB, GF . GM, GX,GY,F1,F2,CO8T.SINT,
0po0s 2CAT,C1,C2.C3,C4,C53,C6,07,C8,C9,¢10,C21,C12,C13,C14,C15,C16,C17,
0g06 3c18,C19,¢20,C21,C22,C23,C24,C25,€26,C27,C28,629,D1,D2,N3.D4,05,
8007 406,07,D8,09,010,011,D12,E1,E2,E3.E4,E5,
0008 SH MM, HM2, MH3, MP1, MP2, N, N1, NM2, Nu3, NP S NP2, IN, INNT, INM2, INNY,
0009 SINP1,INP2, INP3, IM, IMM1, IMM2, IMM3, TMP1, IFP2, IHPX, NL, NLM1, NLM2.
0010 LN LIsLJsLAT KNAT . NMF I MFIJ.MF I, KNT,KPROB,IJTP, MFIT,
0011 BNRX,»NRDsNRXS,NRDS,NPRLY,NCPRLX,NTP, NPT, TZXY1, T2XY2,PCGPRX, TZXY
0012 9sNRXBT
0p1y DIMENSION W{33,33),REN(33,33),T2Xt33,33),TZY(3X,33),€1(33,33),
014 1E2(33,33),E3(33,33),E4(33,33),E5033,33),KNT(33,33),LN(33,33),
0p1s 2029(33.33),MFT(33,33),WSAVE(33,33),TZXY(33,33),
Gols 3C6(702,C7¢(70),C8(70),C9(70),C10¢703,C11(703,C12(72),C13(70),C14(70
0817 43,C15(70),016¢70),C17(70),C18(70),C19(70),C20(70),C21(70)+C27(70),
0018 5C23(70),C24¢701,C25¢70),C26(70),C27(70),C28(76),C0STL7:),SINT(7n)
0019 6,01¢35),D2(35),03(35),04(35),05(3%),D 35),07(35),08(3%),09(1%),
gngu THX(35) o HY(39) WL (703,010 /0i,Ldi703,C1 H
024
0022
to23 DIMENSION XX(35),YY(35),AA(70)
0p24 NRXS=0
co2s NPRXS2Q
0026 1001 IF(NRXS-NRX)} 1002,1003,1003
0027 1002 NRXS=NRXS+1
0028 NPRXSTNPRXSe1
ep29 G0 TO (4201,4202),KPROB
0030 4201 KMM1 3 MM1
0031 KHMP2 a MP2 -
0032 KNML = NMi
0033 KNPZ = NP2
0034 G0 T0 4203
0035 4202 KMML & NML
0036 KMP2 = NP2
0037 KNHL = MM1
to38 KNP2 = MP2
0039 4203 DO 50 III = 2,KmMM1
0040 II = XMP2 - ITI
9041 D0 50 JJJ = 2,KNM1
0042 JJ & KNP2 - Uy
9043 GO TO (1111,1112),KPROB
Gp4aq 1112 IsI
0048 =
0o4é 60 TO 1113
0047 1112 1sJ)
Do4e J=I1
0049 1113 KNAT2KNT(I,J)
0050 GO TO (50,202,203,204,205,206,207,208,209,210,211,50,5¢,50,50,
0054 150,501, KNAT
0052 202 CATSEUI, )
0053 T0
0054 203 LATSLN(I,J)
0055 CATACLILAT)I*C2(LAT)®CI(LAT)+CalLAT)
0056 G0 1O 1
0057 204 LATSLN(I, )

151



FORTRAN 4 PROGRAM RULXLS

o058 GO TO (2041,2042),KPROB
0059 2041 CATSCL(LATI®C2(LATICCA(LAT)*CS(LAT)
0p60 60 10 1
006t 2042 CATRCL{LATI®C{LATI®CA(LAT)*COH{LAT)
fo062 60 T0 1
0063 205 LATSLN(I. ))
ap64 80 TO (2051,2052).KPROR
0065 20%1 CATSCLILATI®C2(LATIOCI(LATI+CL5(LAT)
0066 60 T0 1
oné? 2052 CATSCL{LATI®C2(LAT)I«CI(LATI«CL6(LAT)
0068 0 70 1
0069 206 LATSLNUI.))
tpo70 CATSCLT(LAT}+C18C(_AT)
0071 GO 1O (50,1),KPRO3
0072 207 LATSLNCIL, N
0073 CATSC23(LAT)eg24(AT)
0074 G0 TO (1,50),KPRO3J
0075 208 G0 to (50,2082),K2R08
0076 2082 CAT=D7{J}
0077 60 10 1
0078 209 G0 TO (50,2092),K>R08 ‘
0079 2092 CATSD10(Y)
[TLY) G0 TO 3
0081 210 GO YO (2101,%p?,%X2R08
o0p82 2101 CATsDILI)
0083 60 70 ¢
4084 211 GO 10 (21131,50),%x3R08
(111 2111 CATSDM{D)
0086 60 10 4
0087 4 DO Y1 KIJs1,9
0088 60 TO (9022,9023,9024,9025,9026,9027.9028,9029,9021}.K1J
0089 9021 X1ls]
0090 KJzJ
4091 @0 T 30
0092 9022 KIsl+1
p93 KJad
0094 @0 10 30
0095 9023 KIsf
0096 KJzJel
0097 G0 fo 30
0098 9024 XIsl-21
0099 KJ=J
0100 a0 1O 30
0401 9025 xIsl
0102 KJsJ-1
0103 Q0 10 30
0104 9026 KI=ls2
0105 KJ=J
0108 80 TO 30
0107 9027 KI=l
0108 KJxJe2
0109 G0 TO 30
0110 9028 KIsl-2
0111 KJzy
0112 GO0 10 30
0113 9029 KI=u
Vite KizJ-2
FORTHAN 4 PROGRANM RLXLS
0115 30 KNEANT(RI,KJ)
0116 GO TO (J301,302),K>R08
miz 301 G0 TO €91.2,3,4,%,%1,7,51,51,10,11,51,%°,51,51,51,%1),kN
n118 302 60 TU (51,23,4,5,6,51,8,9,%1,51,51,51,51,51,° 1,%1),KN
0119 2 GO TO (22.23,74,25,51,51,51.51,21),81J
0120 21 W(I,J)aR(I, J)REN(T,JISONB/CAT
0121 REWLI.4) =REWCL, YD *{1.0-0NMR}
6122 GO YO %1
0123 22 REW(KE,KY)  =REW(AT,KJ) <~REMCL,J)e0MBocE4 (X),XKJ)I/CAT)
124 90 TO 51
U125 23 REW(KIIKJ)  =qENC<TsKJ)} =REW(L,J)e0MBe(ES (K1, K)I/CAT)
0126 G0 10 5%
0127 24 REW(KI,KJY SQEW(4TeKJ) =REWU(L,J)00MHe¢E2 (X1, KI}/CAT)
0128 Q0 To %1
0129 25 REW(KI,KJ) *REW{CIsKJ) =REMCI,J)e0MBe(ES (K, K.1D)/CATY
r130 G0 10 5t
0131 3 LsLN(KI,KJY
0132 a0 TO (32,34,34,33,36,137,38,39.31),K1J
0133 3% W(I J)SWII, U2 =REW(TI, 4)eOMB/CAT
0134 REW(TI,J) =RENLL.J) 4(1.0-0MR)
0135 G0 TO 51
0138 32 REM(KI,KJ) =REM(CI,KJ) =REWUL,J)00MBe(CY (L)/CaT)
0137 a0 To S1
0138 33 REMIKI,KJI) SREN(AI,KJ) =-REW{I,J)e0MBe¢CLO(LI/CaT)
0139 ao 10 51
0140 34 REW(KI,KJ)  EREMCLT,KJ? <REW(I,J)oUMBe (L7 (L)/CaT)
0141 60 Y0 51
ui42 3% REW(KI.KJ) =REM(CT,KJ) ~REWCI,J3e0MBe(Cy (L)/CaT)
0143 Q0 T0 51
nyde 36 REWI(KI.KJ) *REWCCI,KJ) =REWCI,J)o0NBe(C13cL)I/CAT)
0148 a0 To 51 .
u14s 37 REW(KI,AJ) SREW(CIoKJ) <~REW(I,J)e0MBe(ClatL /CaT)
uie7 60 TO 51
0148 38 REW(KL,KJ) =REW(4T,KJ) ~REW(I,JIe0HBe(CLL{L)I/CAT)
0149 60 To 51
0150 39 REW(KI.AJ) SREM(CIoKJ) =-REWCI,J)#0NHeC12(L)/CaAT)
0151 GO TO 51
nise 4 LsLNIKI,XJ)
0153 GO TO (42,43.44,45,51,47,48,49,410,K1Y
n154 A1 W(T»d)an(I,J)=REW(T,J)eONB/CAT
0158 REWLTS ) *REWCT, 4 (1.0-nNR)
158 G0 70 51
u157 42 REW(KILHJ)  FREM(CT,KJ)  ~REWCI, J)e0MBe(C29¢L3/CAT)
0158 60 10 31
0159 43 REW(KLLKJ)  ®REWCAT,KJY  ~RENCI, J)e0MBe (CLOCL)/TATY
u160 ag fo 51
V161 44 RENIKI.KY)  SREW(KT KJ)  -HENCL,J)e0MBe(CT (LI/CaT)
0102 GO0 Tu %1
0163 45 REWIKI.KJ) SRFN(LT,KJ) =REWCI,)00MB0¢C8 (L}/CATY
0164 Q0 To %1
0165 47 REW(KL,KJD)  BREW(LT,KJ)  -REWCI, )e0HUs (C1a(L)/CAT)
0166 G0 Tu 51
0167 48 REW(KI,KJ)  ®REW(KI)KJY =REWCI,))e0MBe(CL1(LI/CAT)
0168 G0 T0 51
0169 49 REW(KIIKJI) =REW(<IsXJ) ~REW(I, )e0MBeiC12(L)/CATY
0170 80 10 91
0171 5 LaLNIRILKY)

152




FIRTRAN 4 PROGRAM

0172
0173
0174
0175
0176
0177
0178
0179
0180
D181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
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0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
6239
024p
0244
0242
0243
0244
0245
G245
0247
0248
0249
0250
6251
8252
0253
0254
025s
0256
0257
0258
6259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0278
0271
0272
0273
0274
027%
0276
0277
0278
0279
028¢
0281
0282
0283

0285

4

ES

52
53
54
55
56
58

©

L

o

6

-

63
65
67
69

~

7

-

72
7

>

78

Y

"o

92

9

10
101

o

105

11

-
oy
w

1.
-
-

51
50

160
161

170
7

N

17

RLXLS

GO T0 (52,53,54,55,56,51,58,59,46),h1y

WX JY3W(I,J)-REW(T, ) vOMB/CAT
REW(I»J)=REN(T,J)9(1,0-0M8)

GO 70 51

REW(KI,KJ)=REW(KI,KJ)=REW(I,JIe«AHGs( C§ tLrscar)
GO TO S1
REH(KI-KJ)IWCH(KI:KJ)-REH(I.J)inﬁnt(-CIS(L)/CAY)
GO TO 51

REH(KI-AJ)=4Eu(KI-KJ)~REN(I.J)Onﬂa'( €7 (iscamn
G0 TO 51

REW(KI>KJ)=REW(KI KJ)=REW(T,J)enMBel CA (L)/CAT)
GO TO S1

REW(KI, KIY=REN(KI,KJ}=REW(I, J)enMge( Cia(L)/caT)
60 To 51

REWIKISKJS)ZREW(KT KJ) =REW(To J)onMReC CL1CL)/CAT)
GO TO 51

REM(KI,KJIeREN(KT,KJI=REW(I, J)oNMRs( C12(L)/CaT)
G0 To S1

L=LNCKI KY)

60 TO (1,63.51,63,51+67,51,69,611,KIJ

WO+ d)=W{I,J)=REWN(I,J)eONB/CAT

REW(I,J)=REW(T, J)o(1.0-0MB)

G0 Tg 51

REW(KI,KJ)=REW (KT, KJ)=REW(I, J)enMB( C2p(L)/CaT)
60 T0 51

REW(KI,KJ)=REW(KT,KJI=REW(T,J) envge( CrotLlrscam)
60 To 51

REW(KIKUI=REWIKTKJ)=REW(T, ) onMp el CeziLi/scrmy
GO T0 S1

REWIKL, K 2REW(KI,KJ)=REW(I, J)enmgag C2ir(Lrsce )
GO To 51

LZLNIKI»KS)

GO TO (72,51.74,51.76,51,78,51.71),kIy
W{I,J}aW(I,J)-REN(I,J)eOMB/CAT

e 40T, MNarl.0-0m8)

REWIKI KU} zREWCKT A KJ)~HEW Lo wsviinp=i Gigt
Gg 10 51
REW(KI,KJ)=REN(KI,KU)=REWCI . J)«nMAe( C25(L)/CAT)
G0 To S1

REN(KI.KJ)=REW(KI,KJ)=REW(T,JIsnMAsl CPRLL)/CAT)
G0 TO 51

REW(KI,KJ)=REW(KT,KJ) "REW(I, J) #nMRs ( Crr(Lr/scam)
G0 To S1

G0 TO (%1,51,84,51,51,51,88,51,81),KIJ
W(TsJI3W(1,J)mREW{T,J}00NE/CAT

REW(I,J)=REAC(T, J)0(1,0-0MB)

GO T0 51

REW(KI,KJ}=REW(KT,KJ)=REW(I,J)*nHR*( Dy (Jy/Cat)
GD TO 51

REWIKL,KJ)=REW (KT, KJI~PEN(T, J)¢nMRe( D9 (J)/CAT)
GD TO 51

60 T0 (92.51.%1,51,96,51,51,51,91),K1J
W{I»JIONCI,J)=REN(I,J)eOMB/CAT

REW(I,J)ZREW(T, J)e(1.0-0M8)

GO YD 51

REW(KILKJY=REW(KT, KJ)=RENCI, J)4NMBo( DB11(J)/CaT)

RLXLS

GO TO 51
REW(KILKJ)2REWIKT, KD =REWCT,J) MRS ( D12(J) /CAT)
GO Ty 51

G0 YO (51.51,%1,105,51,51,51,109,101},K1J
WIo)3M{I,J)=RENCT,J)4OMB/CAT

REW(I, J)=REA(T, )e(1.0-0MB)

GO TO 51
REM(KIKIIZREW(KT,KJI=RENCI.JI2aME*( D2 (I)/CaT)
GO Tu 51
REW(KL,KJYZREW(KT,KJI=REWC(I,J)enMRa( D3 (I)/CAT)
GO TN 51

GO TO ¢51,113,51,51,51,117,51,51,111),K1J
W{IsJyaW(I,J)-REW(YsJ)s0MB/CAT
REWC(T,J)TREW(T, Ve (1.0-0MB)

GO TO 5%

REW(KL KJ)=REW(KT,KJ}=REW(I,JI4nMAs( D5 (I1/CAT)
G0 TO 51
RFUIKILKJ)zREW(KT,KJ)~REN(I, J)enMBe( Da (I}/CaT)
GO TO 531

CONTINUE

CONTINUE

60 TO (160.170),%3R08

DO 161 I=3,IM

YYCI-2)20(T,3)

XX(1)20.0

DO 162 Iz4,IM

XXCLI=2)=XX(I-3)eHx(I-1)

IMMA=IN-4

DO 163 L=1,IMue

II=2¢]-1

AACLIT)=XX(T)

AACII*1)=YY(I}

I7=20IMM3-1

AACII)aXX(IMM2)

AACIT+1)=YY(IMMD)

XXXEXXCINMI)

NN=IMM3

WNEWZAINTPL (xXX.NNsAA)
DELTAWIWNEW=-W(IMML,3)

REW(IM,3)=REN(IM, 3)+C26(NL)oDELTAW
REW(IHMM1,4)2REM(TIYM1,4)-CI5{NL-1)eDELTAW
WOIMML, 3)=2WNEW

GO TO 1617

00 171 Jy=3,IN

YY{J=2)2R(3, D)

XX{1)=0.0

DO 172 Js4,IN

XX(J=2)2XX(J-3)+HT(J-1}

INMAZIN-4

DO 173 J=1,INma

Jd=2ege1

AA(JDIEXX())

AACII*1)=YY LUy

JJ=ZeINMI-1

AA(JIVaXX(INND)

AACII+1ISYY(INM2)

XXXIXXC(INM3)

153
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FORTRAN 4 PROGRAM

0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0308
0306
0307
0308
0309
03190
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
06324
0323
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0338

RLXLS

NN=INM3

WNEWZAINTPL (XXX, UNsAR)
DELTANEHNEW=W(3,IVML)

REW(3, IN)EREW (3, 14)*C20(1)eDELTAN
REW(4, INM1) SREW {4, INNL)*C29(2) 4DELTANW
W3, INML)IUNEW

1617 CONTINUE

IF (NRXS.LE.NRXBT) GO 70 3005

NPT2Q

DO 3001 IJs1.NTP

T=IJTP(2014=1)

JEIJTP(2e1))

ALMX(T)

A2zHY (D)

AJzMX{I-1)

AdzmY(J=-1}

TIX{Tsddz  (GM/(ALeA3S(ALeA3) I )aiaBne2ek(Tet, JrscALeeR-AT 02 0NcT,
1J)-Ages2e4(I-q,J})

T2YCT,u) 2 {GM/ (A2SRAP (AZ+A4)) e (A4002¢W(LsJel) e (ADOI2 RGO I0M(I,N)
1eA20420W (I, J"1))

3001 TZXY2(IVISSARTITZN(I,J)ee2+TIV(T, )02

D0 3002 IJEl,NTP

IsIJTP(2eIU=1)

JEIJTP(2e1)
PCGEACTZXY2{T ) aTIXY1ITIII/TIXY2(TJ))0100.0
IF (PCG.LE PCGPRX) GO TO 3002

NPTENPT#1

3002 TZXYL(TJIeTIXY2(1J)

IF (NPT,EQ.0) GO TO 1003

3005 CONTINUE

IF(NRXS=NCPRLX) 1005,1n0%,1004

1004 CONTINUE

IF(NPRXS=NPRLX) 1001,1006,1006

1006 NPRXS®Q
100% CONTINUE

WRITE (5,1041) NRXS,KPROA

1041 FORMAT(1H1.,49x,214 RESULTS OF RELAX NO, r14,5%,11HPROBLEM NO.,T3/)

104

~

WRITE (5,1042) T, do (T, J) REWETN DY, UBS, NY, T3, M)
FORMAT{LH ,77,6%, 1HL, 3%, 1HJ, 16X, 1KW, 18X, BHRES I DUAL./ /7,
1(3%,214.6X,2£20,8))

WRITE (5,1043) NPT,PCGPRX

LPRX & NRXS

60 TO 1001

1003 IF (NRXS LEQ. LPRX) GO TO 4044

WRITE (5,1041) NRXS,KPROR
WRITE (5,1042) ((CT,JeWCT,J),REW(T,JI), 28, N) T3, M)
WRITE (5,1043) NPT,PCGPRX

1043 FORMAT(IN ,///,110,92H TEST POTNTS MAVE NOT YFT CONVERGED TO THE

1SPECIFIED MINTMUM CHANGE IN STRESS PER RELAX OF LFB.3,7HPERZENT)

4044 RETURN

FORTHRAN 4 PROGRAM

0001
o2
0003
0004
000%
0008
0007
0008
0009
0010
vo1y
0012
0013
0014
0015
0016
00i?
0018
0019
Go20
0021
0n22
co2s
0024
Q02%
0026
0027
to2e
Q0o29
0030
0031
0032
0033
0p34
0035
0036
037
on3s
0039
0040
to41
on4z
0043
0nda
up4s
1046
1047
0p4s
1049
0050
0051
00%2
0033
0054
0093
n0%e
0057

CSTRI

20

20

END

STRLS

LS

SUBROUTINE STRLS

COMMON W, ML WSAVE, W1, W15, N2, W25, T7X, TZY, TZXB, 17YR, T7X0S,T2Y8S,
LTZXM, TZYM, TZXF, T2YF ,REWsMX, HY, AMB, GF ,GM, X, GY,F1,F2,L0S),SINT,
2C€A7,C1.C2.C3.64,65,C6,07,C8,C9,C10,C11,012,C14,C14,015.C18.017,
3C18.€19.€20.€21,C27,C2%.€24.C25,026,C27,C2R,C20,11.,02,n3.D4,08,
4D6,07.08,09.010,NP11,012,€1,€2,E3,E4,E5,
SM, M1, MNZ, HM3, MP1, NP2, N, NM1, NM2  NM3, NP1 NP2, Tiv, TNM1, ENN2, INNS,
SINPL, INP2, INP3, IM, TMM1, IMM2, INM3, TMP1, INP2, IMF R, NL,NLMY NLM2,
TN, LI LJoLAToKNAT.NMF I, MFIJ,MF T, KNT, KPROB, ZJTV MF1T,
BNAX» NRDs NRXS,NADS» NPRLX»NCPRLX . NTP, NPT, TZXY1,)ZXY2,PLGPKRX, T2XY
9 NRXBT . NKPROB,A,R.FPL

DIMENSION W(33,33),REN(33,33),TZX¢33,33),T2v(23,33),E1(33,33),
15?(53.35);E&(38.3!).El(}!.&&’:EN(!S.SS’.KNT(X\,SN).LN(‘J-SJ).
2C29(33,53),MFT(33,33),WSAVE(33,33), T2XY (33,33},
366¢70),C7¢705,C8(70),C9(70),C10¢70),C11(7U),CI12¢77),C13470),Cr4(70
4),C15(703.,CL6(703,C17(70),C18(71),C19¢(70),C20(70),C21¢732,C22(70),
85023(70),C24¢70),C25(70),C26¢70),C27(70),C28(77),c0ST{7.3,SINT(70)
6,01 (35),D2(35),03(35),04(35),D5(35),06035),07(15),08(3%),D9¢35),
THX(S5),HY(35),wL(70),LT(70),LJ(70),CL{70),C2¢(7N),L3(72),04L0),
BC5¢70),010(35),011(35),012(35), TZXN(T0),TZyYM(70), T2XF (703, T2YF (70D
9, IJTPL207, TZXY1(10), TIXY2(10) , MFIT(90) ,MFLICO)
ASTZXYF(70), TZxYMET70)

GO 7O (1,2,10),KPR08

AJZHX(MM1)

ALLEHX{MM2 )} eHy (MM1)

D0 & J=3,N

TIX(M,J) s
1 CGHO L CALLas2-A3002)0WiM, J)=AL10020W(MNL, J)eATe20W (MM, J)) )/

(A3eAL1e(ALL=ADDY

3 CONTINUE

TIX(M,3)aT2X{M, 3)4HY(3) /2.0

DO 200 Js4,NMq

TIXUHIIIOTZXUM, D)0 {EHY(J-1)/2,0)8(HY{J)/2.00)

TIX(M NI ETZX(M, NI OHY(NNL) /2.0

TIx8S80.0

DO 4 JaS.N

TZXBSETIXBS*TZX (M, J)

T2x8S*TIxks/8

FPy = TIXB/Y2xpS

DO 7 Is3.M

DO 7 Je3.N

wlIsJ} ® FRley(I, )

WSAVEC(I, S ew(I, )

CONTINUE

QX=s(A*TIXBS)/W1S

IF (NKPROB .EqQ. 1} GO TO 10

RETURN

A4SHY (NM1)

AL2WHY (NM1)eHY (NM2)

00 3 Iad.M

TZY(L N)S{GM/ (A4OAL120(A12-A4))) 0 ( (A2 =AAPED)0W(T,N)=R1200620u¢
1I,NM1) A0 02ei(T, VMDD )}
S CONTINUL

TIV(ILNINTZY LR, NI OHX(3)/2.0

DO 201 Is4,Amy
1 TZY(I,NIAT2ZY(T NI C(HX(L-1)/2,0) e (HX(1V/2:00)

>

-




FORTRAN 4 PROGRAM

o058
0059
0060
(1130
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0p72
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
6087
0088
0089
0090
0091
0092
co%3
0094
vpYy
0096
0097
0098
0099

0114

FORTRAN 4 PROGRAM

STRLS

TZY{M NI STZY (M, N) oHX(NM1) /2.0
TIY8S%0.0
DO 6 Is3, M
TZYBSETZYBSTZYC(TI,N)
TZYBS=TZYBS/A
F sT2YB/TZYdS
DO 8 Is3,M
DO 8 Ja3,N
WlIsd)aFentIsy)
CONTINUE
GY=(BeTZYBS)/u2S
If (NKPROB «EQ. 2) GO 7O 120
RETURN :
DO 11 Ix4,MM1
00 11 JsINPL,NML
AlsHX(I)
A23NY (D)
AJ=HX(TI~1)
AdanY{y-1)
TIX(I, )= (Gn/(AanSt(AioAS))).(ASOOQ-H(1~1,J)o(AlOOQ-A!.oZ)au(I.
1J)=ALe020M(L-1,0))
TZY(I.J)r(Gﬂ/(A:oAJ'(A?oA‘)))o(Al-OZOH(l.Jox).(A?;o?'AA‘OZ)ou(!.J)
1=A29¢20N(I,J-1))
11 CONTINUE
DO 12 IsIMP1,MMY
DO 12 Jad,IN
Al=MX{I)
A2aMY(J)
AJ=MX(X-1)
AdeMY(J=-1)
T2X(I,d)= (GH/(AlOAJ'(Al’AS))?o(ASOOZON(!'!-J,Olll“z-ASOCZ)oH(I»
1J)-A14020W(L-1, 4))
TZV(I:J)I(GN/(AQOAG‘(AZ‘A‘)))'(A“‘Z‘H(InJ01)'(A2002-Al002)Ok(!,J)
1-A2492e8(I,J-2))
12 CONTINUE
DO 13 Ia4,IM
DO 13 Js4a,IN
Aranavis
AZEHY(J)
AJ=HX(I-1)
AdznY(J-1)
A9xHX(Is1)eal
ALOSHY(Js1) e
ALLEHX(I-2) A3
AL2aHY(J=2)eny
K=MFI(I, )
G0 TO (14,1%.16),¢
CONTINUE
ALsHX(I)
A2=HY (D)
A3ZsHX(I-1)
AdeHY(J=1)
TIX(I,J)®  (GM/(A10A3O(AL+AS))) e (AT o0k 101, S o (ALe92-A3002)au(],
1J)=ALee2en(I~1,4})
TZV(I;J)'(GN/(A!'AQ'(A?‘A‘)))0(A‘O‘?‘N(InJol)O(A?O‘Z'ACO'Z)‘H(I.J’
1-A20020W(1,4-1))
Q0 TO 18

1

»

1

STRLS

13 CONTINVE
ALsHX(T)
A2zHY(J)
A3zMX(I-1)
AdsHY(J-1)
TZXCIoJI =GR/ (ALIASOCAL+AS) I )0 CAB0020H(141, )+ (A1002-RT002)0H(T,
1J)-A1ee2em (-1, 4))
TZYL(I Jl-(GF/(szldt(A?OAI)))O(LJDtZ'N(!,Jol)~(A7002-A4c02)cutl.J)
A=A20020N(I,J~1))
G0 TO 13
16 L=LN¢I, 9
IF (L GT,2.AND,L..T,NLM1)GO TO 49
IF (L.EQ.2) Gn YO 18
6o 70 20
18 TZXF(LIX(GF/C(A30A110(A11-A3)) )0 ((AL1992-A3002) oW (I, J)=AT240204(1 3
1,J)0A30026¢(W(T, =2, 00uSAVE(L, J)))
TZYFCLIR(GF/(A40R120(A12-A4)) )0 ((AL2402-A4002) 0N (T, )=A129920N(T,
1U-1)eAde024n(T, 4-2))
TZXMILIS(GM/(ALOAD#(AT=A1)))0((AL82=AD002) 0N (T, ) +AT0e20N (oY, )
1=Ajeezen(i+z, i)
YZvN(L)I(GNI(.ZoAluc(Ai0-!2)))0(tAZ‘OZ-Alntuz)-u(I.J)oA1ECOzOu(!.
1J01)-A2042001T, Je2))
G0 70 &3
19 CONTINUE
TZXFAL)=(GF/CASOALLIO(A11-A3) )0 ((AL1002-A3002) o Wi, J)=AT100200CT~1
1,J)*A300200(1a2,0))
TZV‘(L)'(ﬁF/(A‘OALZ‘(AlZ-AQI))0((AlZO‘Z—AQ‘.?)ON(I-J)-Al?“ZOHlI:
1J~1)«Ade020id(T, j=21)
TZXH(L)I(GHI(AloAOO(AF-Ai)))0((Al.o2-A9t02)tN(I-J)“?"?'“(I‘l-J)
1-A10¢20¥(1+2.,))
TIYM(LI®(GM/(A20A100(A10-A2)))0((A2092-R10002)ou(I,J)eh1000200(T,
1J91)-A2¢42¢01T, Jo2)) :

G0 TO 13
20 TZYFILIB(GF/(A40AL20(A12-A4)) )0 ((AL12002-Ad002) oN T, J)~AL20020u(T,
1J=1)2A40022(2 QOWSAVE(T, J)-W(I,J}))
VZXV(L)I(GF/(ASOAll'(l]1-A3)))'((A!l"?'ll"?)‘N(I-J)-All"2‘l(l'1
1,J)0A300200{T2,))
TZXR(L)I(GH/(AI‘IOO(A?-A1)))0((aloOZ'AOO'Z)lH(I.J)OA?OtZ'N(I'l;J)
1=A19¢20W(14+2,9)) X
TZVH(L)I(Gn/(AZoAlntthln-AZ)))o((Azo02-Alv'027~N(I.J)oA10OOzou(x.
$J%1)=A20020N(1,002))
Q0 TO 313
CONTINUE
Lsy
I=3
JEIN
ALSHX(D)
A2=HY{Y)
AZSHX{I«1)
Ad4zAY(J+1)
A9MX{TIeNX(Ta1)
ALONHYCJ) oMY (geoq)
ALLOHX(I=1)eHX(T~2}
AL2WHY(J=1)oHY(Je2)
TZXF(L)*0.0
YZV'(L)I(GFI(AQO‘&Z‘(A]Z-AQ)))0((Al!"?'l!"2)0N(1-J’-Ai?"2'l(r'
1J=1)¢AAo020m(T, )=2)?

1

“

~

1
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FORTRAN 4 PROGRAM

0172
0173
0174
2175
0176
0177
0178
2179
2180
0181
0182
0183
0184
0185
0186
0187
G188
6189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
6204
0205
0206
6207
0208
ozne
02190
0211
0212
0213
0214
0218
8216
0217
v218
0219
0220
0221
0222
0223
6224
0225
0226
0227
0228

aao

FORTHAN 4 PROGHANM

01256

azee
hz67
to68
0269
n270
0271
w272
6273
0274
0278
0276
8277
0278
0279
80
1281
0282
n2ay
0284
n28s

STRLS

TIXMLIS(GH/ (AL€ATO(AT=A1D)I#((ALOO2-A0¢ 2o w(T, ) +AS0a2¢H(Tr1,J)
1-A1%e20M{I+2.9))
TZYMCLIZ(GM/(R20A100(A10-A2))) 6 ((A2002-A20002 oW (T, )+AL00 20u (T,
1J%1)~A20020n(T,J+2)}

L=NL

IsIM

Jz3

AlsnX(ID)

A2sHY L))

A3zHX(I=1)

Ad=HY(J-1)

A9xHX(T)+HX(Te1)

ALOSHY(J)*HY( Joq)

AL EHX(1=1)*HX(T~2)

A12=HY (J-1)eHy(J=2)

21 TZYF(L)=0.0

TIXFALIS(GF/(A3eAL1e(A11-A3)))0((A21002-A3002)eN(T,Jd=R130020M(T "1
1,0)%A300204 (12,00
TZXH(L)I(GH/(A{.AVt(A?-ll)))'((A1.n?-ivo’?loﬁ(}-J)"q‘ti’uiI’I-J)
1oA1ee200(T+2,4))

TIYML)R(GM/ (A20A100(A10-A2)))e((A2092-22004214W(1,J)eA1L0020H(T,

1J¢11-A20020N(T, Je2))
DO 37 L31,NL

TaLI(L)

JeLJdiL)

TIXYF(L)ISSORT(TZXT(L)I0e2+TZYF(L)002)
37 TIXYMCL)ISSORT(TZXW(L)#e2+TZYM(L)®e2)

STRESSES AT RECTANGULAR ROUNDARIES

ALsHX(3)
A9uHX(4)+AY
DO 35 Ju3,InNM>
3% 'ZX(J;J)'(GF/(Al'AO'(AQ'll)))‘((lit‘?“QOO?)ov(!.J)OAQ!O?IH(!,J)
L1oA1ee2eW(5,4))
D0 23 JsINPL.N
23 Yll(l;J)'(GH/(Al‘tﬂ'(AV-All))‘((A]002-Av‘0?)0dt!.Jl‘lnvo?cH(I,J)
1-A1 W(%,d))
TZX(3,INML) R (GFewSAVE {4, INM1D ) /ZHX(3)
DO 24 Jud4,INMy
A2zMY (D)
AdsHY(U-1)
24 TIV(3,J)5(GF/(A20A49(A2+44)))00 AGeo200(3,Ue))o(AR002-A4002)0uLY,
1J)-A2ee20W(3,y-1))
DO 25 JsINP1.NMy
A23RY (D)
AdzHYLU-1)
2% TIY(3,J)3(GM/(A2ehao(AD+a4)} )00 AQes20W 3, Jv1)+(A2002-24002) %0 (X,
1J)-A2002¢0 (3, =-1))
AJaNX(MM1)
ALIBHX{MM2)+A}
DO 26 Jx3,N
26 TIX(M,JIB(GH/(ASeR110CaL1-A3) D) el (AlLeoz=AR0s hou(M,J)-s210020u¢(
AMM1,J) ¢AZee 24y (MN2,J))
DO 27 Jw4,NML
A2EHY(J)
AdadYiy-1)

STRLS

27 TIYUM, JIX(GM/(ADSR4O(AD+A4I DD LAAOe2ON( M, Je1) s (ADOOZ RASI2Iou(N, )
1=A2% 020N (M, J-1))
N0 28 Iv4, IMMy
Alenx(I)
A3=HX(I-1)
28 TZXCIo3)2(GF/(ALeASO(AI+A3}))0(ASSe20N(T+1,3)+(A1402-ATCOL)oN(T, 1)
1-Afee2eW(I-1.3))
DO 29 IsIMPi.MMY
ALsHX(I)
A3=HX(I-1)
2 TIXCI 312 (GM/(ALeABOCAL+ABI})OCA30020WIT+1,3)+(A1002 AT e2)eu(T,5)
1-A1¢e20d(1-1,3))
A2xNY(3)
ALOEHY (4)+A2
DO 350 I=3,IMM2
30 TIV(I:3)’(6’/(A201100(Aln-l2))).((AZO'?-AIBv#?)OV(Y:J)»A]Dto?cu(l,
14)-A20020u¢L.8))
DO $1 IsIMPL.M
31 TZYCT,3)u(GM/(A20A109CA10-A2) D)0 (CAZ*¢2-AL0® ¢ I ONIT,3)oALG O20ucT,
14)-A20020u(I.%))
TZYCINML, 3)#CGF e CACIMMY, &) =WSAVE(IMN1, 423 }/nY ()
DO 32 Ted, MMl
ALzMLT)
AS=HX(I=1)
32 TZX(I.N)x(GH/lA1tAJt(A1.AJ)))o(AJ»oZ’N(l’x.N)a|A1c~z-lxo-2).N(T.M)
1-A10020W(T-1,N))
AdENYINML)
AL129HY(NMZ) e A4
DO 83 I=3.m
33 YIV(lnM)H(GN/(AO0l120(!17’!‘)))0((Al?“?"“'/)‘u(l.N)-Al?'o?ou(l.

ANME ) eA4e020u(T,NN2))
DO 34 Le*1,NL

IsLICL)

JELJ (L)

WLCL)BW(T,y)
TIXCI,4)00,0
34 T2v(I,0)=0,0
00 86 Is3,M
DO 36 Jn3.N
36 TZXY(I, ) 2SORTITZX(L,J)0e2°TZYLI, )02}
WRITE (5,100 LT, JpWlTodd s TIXET Do TTYCL 0 T7RY(Tau) ), wa3, Ny, 1]

1.M
100 FORMAT (1M1,48X,30HINTFRTUR AND HOUNDARY STRESSES,/////0
16!.1«1.5!.1NJ.1!!.1Nu.?2!.3&!11,\7!.5Nt7¥.\nl.i7N!7!v (MESULTANTY,
2/7/7,43%,214,4X,F20.8,320.3))
WRTTE €5,100) (CLT(L)ay JELY o TZXMEE I TZYREL)  T/XYRCLI L T7XF LY, T7YF
1LY TIXYF(L) ), Lw1sNL)
101 FORMAT (1H1,51%,19HINTERFACE STRESSES.///77/,
136X, 9HIN MATHTX,40%,12HIN INCLUSION, /7,
26X, AHT L 3X. 1R, 11X, THTZA, 14X, SHIZY, 11X ORRESUL (ANT, 11X, WnT2X, 14,
JIATLY 111X OHRFSULTANT, 77/,
AL3x, 204,017,900
WAITE (9,102} GX,35Y
102 FORMAT (1M 77,344 EFFFCTIVE CIMPOSITE SHEAR MADULUS.//. 4H Gye,
11E20.%,7/,4H QYs,1E20.%)
RETURN
END




COMPUTER OUTPUT SAMPLE PROBLEM



ELLIPTICAL INCLUSION

GRID vODE ARRAY SIZE

QUADRANT DIMENSIONS

MATRIX SHEAR WODULUS

INCLUSION SHEAR MODYLUS

RELAXATION FACTOR

LONGITUDINA AL SHE AR

A = 0.519 B

(OMEGA HaR)

AVERAGE ZX SHEAR LOADING AT INFINITY {PSI)

AVERAGE 2Y SHEAR LOADING AT INFINITY (PSI)

PERCENT FIBER BY VOLUME

TEST POINT CODRDINATES

I

N OE s A

o

GRID SPACING

—

HX(I}

1.05746400
0.04222610
0.04069630
0.06475590
0.13994220
0.079915580
0.04000000
0.01594530
0.00635140
0.00635160
0.00635160
0.00635160
0.00635160
0.00635160

HY (D)

0.24562860
0.20463070
0.21974070
0.20000000
0.05000000
0.02100000
0.01400000
0.0068%9060
0.00635140
0.00635160
0.00635160
0.00635160
0.00635160
06.00635160

INPUT PaTa

=15 BY 15
= 1,000
= 0.20004006

® 0.4000+p07

= 1,750
t 1000.00
= 9.
= 70.00

AN A

YSI=s
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coocomacococconooco

cocococowoooo

cowocococoenocccoOc0OOccOO0

RESULTS OF RESID NO.

RESIDUAL

1

PROBLEM NO,

1



0.

0.10000000%001
0.10000000«091
0.10000000+001
0.10000000+003
0.10000000+001
0.10000000«001
0.10000000+0012
0.100000000p1
0.10000000#0p1
0.10000000«001
0.10000000001
0.10000000+001
0.10000000+001
0.10000000001
0.10000000+091

cocococoooococococcacnaooo

cocoooocoocooonccon

0.49575113+0190
0,49575113+010
0.495751135+010
0.49575113+010
0.49575113+010
0.495751134010
0.49575113+010
0.495751134010
0.49575113+010
0,495751134010
0.49575113+010
0,49575113+0410
0.495751134010

coceoccocoencocococcoa
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T R RE T R I R A Rl kb ok b ohahahahaiel <

P CC O OO OOOOOCCOCDD I PRDPERPEREBB®® ¥ ¥ I I LA AN DU LR

W
0.
0.
[
0.
0.
0.
0.
0.
0.
8.
[
0.
0.
0.
[
0.38208566-001
0.34268606-001
0,29689896-001
0,235298788-001
0.1703732%-009

0.15660726-001
0.15110390-004
0,14749971-001
0.15627010-004
0.16315535-00¢
5.16883871-001
0.173280%1-00¢
0.17645281-004
0.17833762-004
0.17892572-001
0.62960087-001
0.59585409-004
0.51573259-001
0,40441258-004
0.29491908-001
0.27087291-001
0.2615%005-004
0.31142670-001
0.33073285-001
0.34554900-001
8.35756738-001
0.36683213-004
8.37337808-001
0.37723113-003
0.37840873-003
0,89013255-004
0.84174856-001
8.7275%223-001
0.56995270-001
0.41404360-001
0,37921124+004
0.52259369-001
0.59142203-003
0.61794159-001
0.63823836-00¢
0.65465980-001

0.,66728046-00y
0.876153949-00y
0.68134054-004
0,68285232-004
0.13110833+009
0.12384917+009
0.10671603+000
0.83437427-001
0.60132144-001
0.131601337+000
0.13097342+000
0.13828109+000
0,1411006486+000
0.14327289+000
0.14502630+008
0414637043000
0,147308464000
0.147842904000
0.14797557+004
0,22435050+000
0.213034683+000
0.18160707+008
0.14130375+000
0.41712722+000
0.447929484000
0.,45628547+000
0,46034822+008
0.46188455.00¢
9.46304913+000
0.463978644000
0.,46466821+000
0.46512498+000
0.465348084008
0.46533857+000
0.208573689+000
0.26784290+004
0.22560933+000
0,526360844000
0.674571034000
0.691121204000
0.693590764008
0.697746884+000
0.69855303+004
0.69918820+000
0.69963523+000
0.699984774009
0.70020752+000
0.70030417+000
0,700275424000
0.,32892397+009
0.29669847+000
0.55302546+000
0.7262639%.00¢
0.81129105+000
0.820770%84000
8.82332221+00¢
0.82434772+000
0.82%00237+00n
0.82334239+00q
0,82580867+000
0.82500182+000
0.82592229+000

RESYLTS OF RELAX NO. 110

RESIDUAL

*0.19016103+900
©0.90714801+002
*0.,24172082+003
*0,75809827+003
*0.25379650+004
=0.%52682039+004
»0.62004017+004
«0.39981055+003
*0,35287063+004
©0.20371057+004
=0,10804859+004
«0.10698458+003

0.87293423+003

0,18491147+004
*0,18971826+003
*0,34008831+000
«0.76949124+4002
,19885271+003
©0.,563014525+003
=0.25790069+004
0,71266446+004
=0,42247939+003
*0.,10581513+00%5
.56047732+004
=0.15810211+004

0.37849887+003

0.23352735+004

0.42775108+004

0.61931793+004
©0.%50419339+003
°0,49461173+000

0.28904450+0600

0.10033647+002

0.20455013+002
©0.10129771p04
*0,23309355+003
“0.67899667+004
*0,18339092+00%
*0.36941880+004

0.42182179+004

0.70371000+004

0.98747623+004
0.12708502+00%
0.15%516982+008
“0.10186314+004
*0.75593853+000
0.43176683+001
0,20715837+002
0.53993150+002
©0.13080863+003
“0.48456%75+004
*0.,AB531383+004
=0.34359582+00%
0.34842340+004
0.,197861544005
0.238714310+00%
0.28023176+008%
0.32209330+005
0,36401885+00%
©0,21481407+004
+14155845+001
*0,33884774+002
=0,51851987+002
©0,%50531254+002
*0.11584234+004
*0,76245722+004
*0.13857875+008
=0,61531541005
0,12636901+008
0.42418034+00%
0.48707805+009
0,55102844+00%
0,61%64311+008
0.48062171+003
»0.39616282+004
*0.,176886113+001
*0,65933902¢4002
©0.21344821+002
©0.92813474+002
©0.44787023+003
*0.48%21925004
“0.91599713+004
*0.43712619°005
0.10486781+008
0.32184964+00%
0.36760141+005
0.41408742+00%
0.4610339000%
0.50823208+00%
©0,28794598+004

0.
“0,17424400+002
©0.18090677001
“0,5787%513002
©0.24640315+003
©0.307414854004
«0.584868018+004
~0.28313580+005%

0.69774787+004

0.,21097396+00%
0.24073387+00%
0.27096334+008
0.30149420+00%

PROBLFM NO.

1



16
17

-

0.82597050+000
0.82594692+000
0.35310588+000
0.50458249+000
0.684%52006+000
0.80672369+000
0.86663202+009
0.87330162+000
0.87509286+000
06.87595073+000
0.87626765+000
0.876503684000
0.87668793+000
0,87682070+000
0,876902324000
0.87693312+000
0.87691343+000
0,52387875+000
0.58730513+000
0.78700539400p
0,83885919+0090
0.88876865+00¢9
0.89431926+000
0.,89580768+009
0.89651917+00¢
0.89678117+000
0.89697590+000
0.89712751+000
0.897236264000
0.89730245+000
0.89732635+000
0.89730826+00¢
0.61927331+000
0,66994560+000
06.78954340+000
0.87103721+000
0.91095432«00¢
0.91538910+000
0.9165/054¢000
A 017143nAL00N
0.91735107+000
0.91750534+000
0.91762513+000
0.917710684+000
0.94776221+000
0.91777997+009
0.91776420+000
0.71455423+009
0.75251835+00p
0.84212207+000
0.903248544+00p
0.93317936+00n
0.93650136+000
0.93738956+000
0.93781258+00¢
0.93798741+0090
0.93808202+000
0.93817080+000
0.935823392+009
0.93827155+000
0.93828390+00q
0.938271144+00¢

0.80975003+000
0.83504037+000
0.89473116+00p
0.,93543494+000
0.955434724000
0.95764681+00p
0.95823745+000
0.95851826+000q
0.95862076+000
0.95869648+000
0.958754984+000
0.95879640+000
0.95882085+000
0.95882847+0009
0.95881937+00¢0
0.9048891700¢
0.91752862+009
0.94736051+000
9.96773818+009
0.97771131+009
0.97881616400p
0.07911078+000
0.97925062+000
0.979301534000
0.97933906+0009
0.97936800+00¢9
0.97938840+000
9.97940033+000
0.97940385+00¢9
0.97939902+000
0.10000000+00%
0.10000000+001
0.10000000+001
0.10000000+009
0.10000000+001
0.10000000+00%
0.10000000+001
6.10000000+001
0.10000000+001
£.10000000+001
0.10000000+004
0.10000000¢00¢
0.10000000+004
8.100000004004
0.10000000+001

TEST POINTS HAVE NOT YET CONVERGED TO THE SPECIFIER MINIMyM CHANGE IN STRESS PER RE' AXx OF

0.33218534+00%
“0.18731457+004
=0.78R80537+002
©0,33450567+002
©0,52113784+002
*0.,38039565+003
*0.32219081+004
=0.75538818+p04
=0.10943353+905
=0.28945519+005
«0.29203647+004
0.71488064+004
0,88110331+004
0,10523028+005%
0,12274960+005%
0.14060280+n05
=0,14147285+004
»0,74803505-001
0,23851251+003
0,29706352+00%
0,18R64766+004
0.18018257+n08
0.29405694+p05
0.35380183+005
0.76B43885+005
0.83831523+005
0.66678171+00%
6.,72137424+005
0.77542827+005
0.R2861786+00%5
0,RBN6E3I93I4+005
“0.12307532+004
=0.61755891-001
0.23149017+003
0.79285538+003
0,18796730+004
0.17706670+005
0429135852+005
§.35%55817:58%
0.279073410+005
0.52100454+00%
0,63322388+n05
0.68385388+005
0.73391171+008
0.78309523+005
0.A3112004+005
~0.10245378+004
»0.4772707/-001
6,22236501+003
0.78495386+003
0.18447315+004
8.17192987+n05
0.,28554227+005
0.34774865+0085
06.31126281+00%
0.49749999+005
0.59147953+00%
0.,A3742845+009
0.68277502+00%
0,72724510+005
06.77057724+005
*0.79702023+003

*0,32744989-001
0+21106688+003
0.27323444+003
0.17807532+004
8.16470702+00%
0.27647971+005
0.33908025+009
0.32968616+00%
0.46767701+00%
0.,54150192+00%
0.28205757+005
0.62198473+005
0,66104137+908
0.A9899287 005
=0.54939997+003

*0,16R26053-001
0419759641+403
D+75762646+003
0.16873119+004
0.15536588+00%
0.26409377+005
0.32648111+008
0.34570496+00%
0,43150812+005
0,48336808+00%
0.51783499+00%
0.55165178+005
0.58461263+005
0.61651336+005
°0.28314684+003

0.05nPERCENT
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INTERIOR AND BOUNDARY STRFSSES

I J L3 TZx TzY TZIXY (RESU.TANT),

3 3 0. 1500.19% T. 1500,145
3 e 0. 1420.483 “. 1420.4%3
3 5 0. 1232.346 i 1232.3¢6
3 6 0. 968.05% T, 968.0%5
3 7 0. 710.533 I 710.573
3 8 0. 653.830 . 653.8%0
3 9 0 630.215 T 630.215
3 1g 0. 613.307 . 613.3°7
3 11 0. 0. . 0.

3 12 0. 23.727 . 23.7:7
3 13 0. 24,556 . 24.5%6
3 14 0. 25.226 . 25.2%6
3 15 0. 25.715 25.71%
3 16 0. 26.n12 26.0°2
3 17 g. 26.108 26.1'8
4 3 0.21628875-004 1510.925 151n.9°%
4 4 0.20470056-004 1429.309 1420 A07
4 5 0.17735003-004 1236.6479 1238,.10°2
4 6 0.14917330-004 969,483 972.1°3
L] 7 0.10177099-004 706,299 709.5°5
4 8 0.935547995-00% 648.523 651,879
4 9 0,90260610-00% 626,372 629,478
4 10 0.88107682-00% [N 0.

4 11 0.93346596-008% 42.214 44,45
« 12 0.97459441-008% 44,113 45,670
4« 13 0.1008%3435-004 45,647 44,670
4 14 0.10350762-304 46.825 47.3%49
4 15 0.10540256-004 47.654 47.8°%1
4 16 0.10652644-004 48,141 48,197
4 17 0.10687974-004 48,289 8. 2¢9
5 3 0.376200612-004 1521.790 1529,.7:0
5 0.35592630-004 1438.228 1439.7¢4
5 5 0.30806b41-004 1241.004 124%.592
5 6 0.24157236-004 970.982 979,143
5 7 0.17616736-004 702.02% 711.8°8
3 8 0.16180559-004¢ 641.228 450,374
5 9 0.15623467-004 0. '

3 10 0,18602806-004 64,618 74,19
5 11 0.19756041-004 87.159 73.7°4
5 12 0.20641072-004 69.079 73.%548
5 13 0.21358979-004 70.617 73.3°%9
3 14 0.21912401-004 71.789 73.3°2
5 15 0.22303418-004 72,606 73.2%2
5 16 0.22533576-004 73.p78 7%.2™
5 17 0.22603919-004 73.209 73.2'0
& 3 06.53171300-004 1538.019 1538.0°9
[} 4 0.50281124-004 1451.49¢ 1454,51%
6 5 0.43459705-004 1247.284 1256.473
6 6 0.34045633-004 973.365% 989,77
6 7 0,24752538-004 696,169 716,73
6 8 0.22651856-004 0. z b.

6 9 0.31216683-004 103.402 A7.869 123,474
6 10 0.35328085-004 106.82p 5C.186 118.072
6 11 0,36912208-004 108.244 118,078
8 12 6.30124619-004 109.330 114,654
6 13 0.39105539-004 110.203 113.577
6 14 0.39859423-004 110.866 112.6°8
6 15 0.40389804-004 111,322 112.17%
6 16 0.40699290-004 111.573 111.754
6 17 0.40789594-004 111.620 111.4°2
? 3 0.78316430-004 1576.298 1576.298
7 4 0.75980232-004 1482.520 1489 ,272
7 s 0.65745901-004 1261,108 -225.6843 1281.2134
7 6 0,496840827-004 979,868 -246,368 101%.178
7 7 0.35910418-004 0. T 0.

7 8 0.69299588-004 188.13% 212,7%2
7 9 0.78235842-004 187.14s 200.3'S
7 10 0.82601014-004 186,794 194.27¢
7 13 0.84288725-004 186.66% 191,943
7 12 0.85582826-904 186.567 190,175
7 13 0.86630208-004 186. 485 188.746
7 14 0.87433114-004 186,417 187,643
7 15 0.87993440-004 186,345 186.8%9
7 16 0.88312682-004 186.282 186.3°7
7 17 0.88391928-004 186,220 184.2°4
8 3 0.13520852-003 1721.263 1721.243
8 4 0.12725452-003 1596.546 1617.477
8 5 0.10848142-003 1302.187 -401.334 1362.610
8 6 0.84406579-004 ¢. Te 0.

8 7 0.24914735-003 355,747 91,832 367,409
8 8 0.26756681-003 334,404 55,245 338.9°8
8 9 0.27255519-003 3428.456 29,806 331.0%8
8 1o 0.27496384-003 325.836 29.3.4 327.1%2
8 11 0.27590275-003 324,749 24,191 325,840
8 12 £.27659841-003 323.897 19.676 324,494
8 13 0.27735245-003 323.212 15.227 323.571
8 14 0.27756355-003 322.684 10,807 322.645
8 15 0+27783840-003 322.312 6.3%4 322.376
8 16 0.27797166-003 322.09% 2.C.9 322.402
s 17 0.27796598-003 322.033 ~2.366 322.042
9 3 0,17068247-00% 2311.497 I3y 2311 ,497
9 4 0.15999365-003 1695.317 -348.128 1730.6%2
9 8 0.13476579-003 0. T. 0.

9 L3 0.31441711-003 589.908 174,259 602,853
9 ? 0.40294919-003 400.51p 49,342 403.5%8
9 a 0.41283529-003 379.329 29.603 380.483
9 L] 0.41550514-003 373.574 21,210 374,178
¢ 1t 0.41679308-003 370.772 15.436 371,093
s 1 0.41727463-003 369.707 12.627 369,923
9 12 0,41763612-003 368.900 1C.178 369,06y
¢ 13 0.41792107-003 368.256 7.774 364,38
9 14 0.41812987-003 367.774 5.382 387.814
9 15 0.41826292-003 367.4%4¢ 3,004 367,446
9 16 0.41832066-003 367.298 .639 367,295
? 17 0.41830348-003 367,298 -1,72? 367,299
10 3 0.19647990-~003 3326.086 [ 332a.0%6
10 4 0.17723027-00% 0. [ 0.
10 s 0.33034499-003 963,124 122.908 990.777
10 [ 0.43382751-003 601,187 71.468 808,420
10 7 0,48461771-00y 412,842 28.278 413,809
0 8 2,49020023-003 391,770 16.922 392.1%
19 0.49180442-003 386.064 12.081 386,243
10 10 0.49253647-003 383.303 8.734 363.402
10 13 0.49200817-00y 382,268 7.109 382.3%
10 12 0.49301116-003 381.483 8,700 381.578
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0.49317022-003
0.49328560-003
0.49335756-003
0.49338636-003
0.49337227-903
0.21092475-903
0.30140600-003
0.40889216-003
0.48188944-003
0.51767516-003
0.52165919-003
0.52272917-003
0.52324162-003
0.52343092-003
0.52357191-003
0.52368197-003
0.52376128-003
0.52381004-003
0.52382843-003
©.52381667-003
0.31293445-003
0.35082165-003
0.44024331-003
0,50108530-003
0.55089629-903
0.53421390-003
0.53510299-003
0.58552799-003
0.53568450-003
0.55580682-003
0.535589138-003
0.58595634-003
0.53599586-003
8.53601015-003
0.53599935-003
0.36991757-003
0.40018623-083
0.47162694-003

* anx

0.54679978-003
0.54750909-003
D.54784751-003
0.54797175-003
0.548063590-003
0.54813546-003
0.54818656-003
0.54821734-003
0.54822795-003
0.54821853-003
0.42683280-003
0.44951035-003
0.50303436-003
0.58954772-00%
0.55742664-00%
0.55941101-003
0.55994157-003
0.56019425-003%
0.56028675+003
0.56035521-9003
0.56040824-003
0.56044594-003

0.56046842-003
0.56047579-003
0.56046817-003
0.48369720-003
0.49880417-003
0.53445994-003
0.5>880386-003
0.57072069-003
0.57204206-003
0.57239488-003
0.57256262-003
0.57262384-003
0.57266907-003
0.57270402-003
0.57272876-003
0.57274337-003
0.57274792-003
0.57274246-003
0.54052774-003
0.54807781-003
$.545897¢2-0032
0.57807006-003
0,58402742-003
0.58468739-003
0.58486338-003
0.568494691-003
9.58497732-003
0.58459974-003
0.58501703-003
0.58502922-9003
0.58503634-00%
0.58503844-003
0.58503556-003
0.59734138-003
0.59734138-003
0.59734138-003
0.59734136-003
0.59734138-003
0.59734138-003
0.59734138-003
0.59734136-003
0.59734138-003
0.59734138-003
0.59734138-003
0.59734138-003
8.59734138-003
0.59734138-003
0.59734138-003%

380.884
380.408
380.112
379.978
380.003

0.
1556.435
986.658
603.998
415,886
394.837
3689.141
386.387
385,354
384,577
383.963
383.51%
383.22¢0
383.n9p
383.120
2503,255
1555,19%
987.714
604,851
416.839
395.821
390.143
387.403
3B6.3/8
385.609
385.003
384.559
384.276
384,154
384,199
1793.723
1553.761
yoa.578
AR RER
a17.664
396,705
391.06n
388.347
387.339
346.586
385,995
385.566
385.297
385.189
385.239
1791.354
1552.647
989.247
606.104
418.319
397.416
391.803
389.116
388.124
387.38R5
386.80C9
386.354

386.139
386.n44
386,107
1790.n20
1551.852
989.723
606.498
418.804
397.953
392.37¢
389.707
388,730
388,005
387,442
387.n41
386,799
386.716
386.79
1789.221
1551.376
990.ne9
606.737
419.118
398.314
392.7%9
390.118
389.154
388,447
387.892
387.503
387.273
387.201
387,287
1788.689
1551.059
990.200
606.898
419,348
398.587
393.058
390.438
389.487
388,787
388,249
387.871
387.653
387,592
387.688

-2l
A1.694
71.957
41,993
16.573
9.884
7..32
5.147
a,(H5
3.257
2.449

13.246
7.891
5.6.3
4,011
3.24

.94

380,889
38p.419
380,116
379.978
380,015

0.
1559.0°%
99n.427
606,006
416,343
395.014
389,273
386,475
385,376
384.5°7
383.974
383.546
383.222
381.090
38%,171
2503.2°5
1556,4°9
994,34
406,307
417.1°9
395.975
398,218
387.476
386,470
385,473
385,011
384,543
384,277
384,1-¢
384,153
1793.273
1554,573
99n 220
06,46
417.8 4
396,743
391,170
388,348
3A7.373
386.5%4
386,000
385,548
385.2°R
385,1°¢
385,279
1791.3%4
1553.6%6
990.1%6
606.6-7
418,477
397.a«0
391,874
389.178
384,172
387.3°%¢
386,812
386,325

1559, 039
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INTERFACE STRESS®S

IN MATRIX ™ INCLUSI'WN

Td T2X TIY RESULTANT TZX TZY RESULTANT
3 o1t 22.764 0. 22.764 L o, n.

4 10 28,140 15,379 32.5608 613,377 61,070 614,349
5 9 50.163 48,653 69.88?2 673.548 ~103,446> 637.073
6 8 100,010 95,271 138,126 630,606 -162,497 651,515
7 7 253,784 167,615 304,140 6RS.RAB 290,201 744,845
8 6 564.361 237,691 609.609 996,445 475,147 1103,933
9 5 972.668 202.765 993.578 132977 -638,1%0 1474,.298
10 4 1558.658 175.394 1568.607 175200 -626,95¢ 1860.806
113 3921.136 55,558 3921.544 3921.119 0. 3921.119

EFFECTIVE COMPOSITE SHEAR MODULUS
Gx= 0,86894¢006
Grx 0.
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APPENDIX C

A RELAXATION METHOD OF SOLUTION OF THE
TRANSVERSE NORMAL STRESS PROBLEM FOR A DOUBLY PERIODIC
RECTANGULAR ARRAY OF ELASTIC INCLUSIONS IN AN
INFINITE ELASTIC BODY

C.1 INTRODUCTION

The solution of the problein cutlined in Scction 1 has been formulated
using a finite difference representation and a numerical relaxation procedure
designed for high speed digital computer operation. The finite difference
approximations of the partial derivatives contained in Equations (66), (67),
and (68) make use of irregular grid spacings in both coordinate directions,
as indicated in Figure C-1. This is an important feature of the solution in
that it permits the use of close grid spacings in regions where it is desired
to determine stresses very accurately, €.g., in areas of high stress con-
centration where stress gradients are high, while allowing a coarser spacing
in less critical regions, This permits a given degree of accuracy with a

minimum amount of numerical computation and computer storage capacity.
C.2 FINITE DIFFERENCE FORMS

The finite difference representations of the partial derivatives are of

the foliowing forms (where f represents either a u or a v displacement

depending upon which derivative is being evaluated).
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(1)

First irregular central differences

of 1 2 2 2 2 ]
= = a, f, .t (ay - a))f. . -alf, .
ox i a; ag (a,1 + a37 A 37+, ( 1 3) i, ] 1 1—1,JJ
df B 1 [ 2 2 2 2 ]
2 vy e B 01 F (g -2 g o -a) f,5-1)
(2) Second irregular central differences
2
2°f 2 |' 'I
— = f - + f + a,f. .
321 ajagzia; +a,) La‘? i+, (al a'3) . 1 1-1,_]_'
i,)
2
97f _ 2
2| T paga, v ey [a’4fi,j+l - lagtaf L aZfi,j-l]
i,
(3) Second mixed irregular central difference
a2¢ B} 43 [az c
3xdy i, j a,la,za}a.‘l(a.1 + a3) (a.2 + a;) 4 "i+1, j+1

2 2 2
tlag-a)fi; - 2 fi+1,j-1:|

2 2
(al - a3) 2
+ YW - . |-a'Af: 111
ajasaza,la; +aj) {a, + a,) L = &J*rs
2 2 2
+ (a.2 - a4) fi,j -2, fi,j-l]

a
1 2
a, f, .
a,laza.3a4(a,l + a3f (a,2 + a;) [ 4 7i-1,j+1

2 2 2
tlag-ag) gy - 2 fi-l,j-l]

(Equation continued on next page)
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(4) First irregular forward differences

§f§ i, j i a)ag (agl- a,) [- (ag } a%) £,5 ° a92 fia,; — 21 fi+2»j]

g% i, j i azalo(a.llo - a,) [- (aio B ag)fi,j ¥ a?O %wj+1 ag %”j+2]
(5) First irregular backward differences

% i, j a3a11(a111 - aj) L(a?I ) a:za) by - a?Il fi-1, 5 ag fl'z’j]
g-fV i,j 34312(3-112 - a,) Ba%Z ) ai) f,5 ¢ a?Z b, 5-1 ai 1’j'2]

The terms a; through a;, represent distances measured from the
point (i, j) at which the difference form is being expressed (point 0 in Fig-
The

subscripts on each displacement term identify the grid coordinates of that

ure C-2) to surrounding points (numbered 1 through 12 in Figure C-2).

displacement in terms of the point (i, j).

|2 10
J41 6 2 Is
} 11 3l [0 1 9
1 71 4 |8
I-2 12
1-2  1-1 0 i+l 142

Figure C.2. Node Identification Numbering System

Central differences are used in representing the equilibrium equa-
tions, Equations (66) and (67). In representing the boundary condition
equations, Equations (70) or (71), and the interface continuity equations,
Equation (69), it becomes necessary to use either forward or backward

differences to remain within the first quadrant of the fundamental region.
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C.3 PROGRAM FORMULATION

The fundamental region is bounded by the grid lines 3 < i <M
3<j<N(see Figure C-1). The computer storage array is bounded by the
grid lines 1 <i<M + 2 and 1 <j< N+ 2, the two additional grid lines
exterior to each side of the fundamental region being used only for indexing

purposes in the program.,

The maximum total grid array size has been established as 17 x 17
and the minimum total grid array size must be 9 x 9. Thus, if the total
grid array size is (M + 2) x (N + 2), i.e., an array with M + 2 grid lines
parallel to the y-axis and N + 2 grid lines parallel t i
9<(M +2) <17, 9 <(N +2) <17, then the usable grid node array size is
(M - 2) x (N - 2) because of the unused grid lines exterior to the funda-

mental region,

For a maximum total grid array size of 17 x 17, the usable grid node
array size is therefore 13 x 13; and for a minimum grid array size of 9 x 9,

the usable grid node array size is 5 x 5,

Grid lines are located as desired in the fundamental area subject to
the following restrictions. Any grid line in the y direction which intersects
the matrix-inclusion interface must, at that intersection, cross a corre-
sponding grid line in the x direction such that the intersection is a grid node
lying on the interface. Also, a horizontal grid line must pass through the
point at which the interface crosses the y axis. Similarly, a vertical grid

line must pass through the point at which the interface crosses the x axis.

C.4 FORTRAN PROGRAM

A listing of the Fortran statements which make up the main program

and its supporting subroutines is presented at the end of this appendix,

The main control program, called TRANSTRESS, generates the

equations to be solved at each grid node and controls the logic flow to the
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supporting, equation solving, subroutines. Initially the program clears the
locations used to store the u and v displacements, the u and v residuals
(REU and REV), and other storage locations which may have values from a
previous problem remaining in them. The program then reads the punched
input data cards. The first card read is an alphanumeric title card of 72
characters, which will be repeated on the printed output. The remaining
data cards supply the program with the physical geometry, imposed stress
conditions and control parameters of the problem, as detailed in

Paragraph C, 6.

The program then creates two grid lines outside of the fundamental
region on each side, which are to be used in indexing during the relaxation
process. A code, MFI, is assigned to each node, identifying it as lying in
the matrix (MFI = 1), in the inclusion (MFI = 2), or on the interface (MFI = 3).
Another code, KNT, is assigned to each node denoting the particular equation
to be solved at that grid node (i.e., equilibrium, boundary or interface equa-
tion) and the difference representation to be employed (i.e., central, forward
or backward)., There are a total of 17 different equation combinations or

node types and thus KNT is a number ranging from 1 through 17.

The proper stress-displacement equation coefficients, listed in
Section 4, are then generated to produce a plane stress or a plane strain

solution.

At every interior grid node the equilibrium equations in the x and
y directions are combined into two equations, one of which eliminates the
u displacement at the node and the other eliminates the v displacement at
t