95 research outputs found

    Reflections on the Changing Platform of Education for the Budding Otolaryngologist

    Get PDF
    Learning is a key component to developing and maintaining competency as a physician. Traditional approaches, such as textbooks, lectures, journal articles, and cadaver laboratories, have been instrumental. With the ease in accessing information, especially via the Internet, this article discusses innovative educational strategies that have evolved from this.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Identification of tag single-nucleotide polymorphisms in regions with varying linkage disequilibrium

    Get PDF
    We compared seven different tagging single-nucleotide polymorphism (SNP) programs in 10 regions with varied amounts of linkage disequilibrium (LD) and physical distance. We used the Collaborative Studies on the Genetics of Alcoholism dataset, part of the Genetic Analysis Workshop 14. We show that in regions with moderate to strong LD these programs are relatively consistent, despite different parameters and methods. In addition, we compared the selected SNPs in a multipoint linkage analysis for one region with strong LD. As the number of selected SNPs increased, the LOD score, mean information content, and type I error also increased

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of tag single-nucleotide polymorphisms in regions with varying linkage disequilibrium-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Identification of tag single-nucleotide polymorphisms in regions with varying linkage disequilibrium"</p><p></p><p>BMC Genetics 2005;6(Suppl 1):S73-S73.</p><p>Published online 30 Dec 2005</p><p>PMCID:PMC1866708.</p><p></p>ith strong confidence. Light blue regions are D' = 1.0 but decreased confidence. White regions are D' < 1 and state D' within the box. An X denotes that SNP was selected by the program. The gray shading in the HAPLOVIEW row represents the Gabriel blocks. The dark lines represent breaks between blocks for both HAPLOVIEW and HaploBlock Finder. For some chromosomes no blocks were identified and this is indicated by hatch marks across the SNPs

    Parallel mechanisms suppress cochlear bone remodeling to protect hearing

    No full text
    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provide unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(−/−)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(−/−) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAE), between wild type and MMP13(−/−) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by osteocytes, to protect hearing. Understanding the cellular and molecular mechanisms that confer site-specific control of bone remodeling have the potential to elucidate new pathways that are deregulated in skeletal disease
    • …
    corecore