80 research outputs found

    Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

    Get PDF
    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD

    オンガクゲキ ヒョウゲン カテイ ニオケル ガイテキ ナイテキ ケイショウ ノ イミ : オンガクゲキ キャクホン ツタカズラ コマチデン オ ジレイ トシテ

    Get PDF
    The purpose of this paper is to consider the meaning of external, internal images in the process of expression on music drama. The major results of this consideration can be summarized as follows: The external image is the "form" of reality, embodiment, that is to say, something visible and audible. On the other hand, the internal image is the simbolic form of idea, imagination, visions, enviromental factor, affect (i. e. substance of consciousness, etc.), that is to say, samething invisible. And the expression in the Music Drama is itself the mental act of representing subject subsisted in emotion and reality from expression, such as singing, acting and the theatrical line, etc..国立情報学研究所『研究紀要公開支援事業』により電子化

    Chronic fatigue syndromes: real illnesses that people can recover from

    Get PDF
    The ‘Oslo Chronic Fatigue Consortium’ consists of researchers and clinicians who question the current narrative that chronic fatigue syndromes, including post-covid conditions, are incurable diseases. Instead, we propose an alternative view, based on research, which offers more hope to patients. Whilst we regard the symptoms of these conditions as real, we propose that they are more likely to reflect the brain's response to a range of biological, psychological, and social factors, rather than a specific disease process. Possible causes include persistent activation of the neurobiological stress response, accompanied by associated changes in immunological, hormonal, cognitive and behavioural domains. We further propose that the symptoms are more likely to persist if they are perceived as threatening, and all activities that are perceived to worsen them are avoided. We also question the idea that the best way to cope with the illness is by prolonged rest, social isolation, and sensory deprivation. Instead, we propose that recovery is often possible if patients are helped to adopt a less threatening understanding of their symptoms and are supported in a gradual return to normal activities. Finally, we call for a much more open and constructive dialogue about these conditions. This dialogue should include a wider range of views, including those of patients who have recovered from them

    Genetic identification of brain cell types underlying schizophrenia

    Get PDF
    With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. Applying knowledge of the cellular taxonomy of the brain from single-cell RNA-sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common variant genomic results consistently mapped to pyramidal cells, medium spiny neurons, and certain interneurons but far less consistently to embryonic, progenitor, or glial cells. These enrichments were due to sets of genes specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (synaptic genes, FMRP interactors, antipsychotic targets, etc.) generally implicate the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with medium spiny neurons did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia
    corecore