32 research outputs found

    Microalgal Biomass for Greenhouse Gas Reductions: Potential for Replacement of Fossil Fuels and Animal Feeds

    Get PDF
    Microalgal biomass production offers a number of advantages over conventional biomass production, including higher productivities, use of otherwise nonproductive land, reuse and recovery of waste nutrients, use of saline or brackish waters, and reuse of CO2 from power-plant flue gas or similar sources. Microalgal biomass production and utilization offers potential for greenhouse gas (GHG) avoidance by providing biofuel replacement of fossil fuels and carbon-neutral animal feeds. This paper presents an initial analysis of the potential for GHG avoidance using a proposed algal biomass production system coupled to recovery of flue-gas CO2 combined with waste sludge and/or animal manure utilization. A model is constructed around a 50-MW natural gas-fired electrical generation plant operating at 50% capacity as a semibase-load facility. This facility is projected to produce 216 million k·Wh/240-day season while releasing 30.3 million kg-C/season of GHG-CO2. An algal system designed to capture 70% of flue-gas CO2 would produce 42,400 metric tons (dry wt.) of algal biomass/season and requires 880 ha of high-rate algal ponds operating at a productivity of 20 g-dry-wt/m2-day. This algal biomass is assumed to be fractionated into 20% extractable algal oil, useful for biodiesel, with the 50% protein content providing animal feed replacement and 30% residual algal biomass digested to produce methane gas, providing gross GHG avoidances of 20, 8.5, and 7.8%, respectively. The total gross GHG avoidance potential of 36.3% results in a net GHG avoidance of 26.3% after accounting for 10% parasitic energy costs. Parasitic energy is required to deliver CO2 to the algal culture and to harvest and process algal biomass and algal products. At CO2 utilization efficiencies predicted to range from 60–80%, net GHG avoidances are estimated to range from 22–30%. To provide nutrients for algal growth and to ensure optimal algae digestion, importation of 53 t/day of waste paper, municipal sludge, or animal manure would be required. This analysis does not address the economics of the processes considered. Rather, the focus is directed at determination of the technical feasibility of applying integrated algal processes for fossil-fuel replacement and power-plant GHG avoidance. The technology discussed remains in early stages of development, with many important technical issues yet to be addressed. Although theoretically promising, successful integration of waste treatment processes with algal recovery of flue-gas CO2 will require pilot-scale trials and field demonstrations to more precisely define the many detailed design requirements

    Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock

    Get PDF
    Algae grown on wastewater media are a potential source of low-cost lipids for production of liquid biofuels. This study investigated lipid productivity and nutrient removal by green algae grown during treatment of dairy farm and municipal wastewaters supplemented with CO2. Dairy wastewater was treated outdoors in bench-scale batch cultures. The lipid content of the volatile solids peaked at Day 6, during exponential growth, and declined thereafter. Peak lipid content ranged from 14–29%, depending on wastewater concentration. Maximum lipid productivity also peaked at Day 6 of batch growth, with a volumetric productivity of 17 mg/day/L of reactor and an areal productivity of 2.8 g/m2/day, which would be equivalent to 11,000 L/ha/year (1,200 gal/acre/year) if sustained year round. After 12 days, ammonium and orthophosphate removals were 96 and \u3e99%, respectively. Municipal wastewater was treated in semicontinuous indoor cultures with 2–4 day hydraulic residence times (HRTs). Maximum lipid productivity for the municipal wastewater was 24 mg/day/L, observed in the 3-day HRT cultures. Over 99% removal of ammonium and orthophosphate was achieved. The results from both types of wastewater suggest that CO2-supplemented algae cultures can simultaneously remove dissolved nitrogen and phosphorus to low levels while generating a feedstock potentially useful for liquid biofuels production

    Bis{1,4-bis­[(3-butyl­imidazolium-1-yl)meth­yl]benzene}­silver(I) bis­(hexa­fluoridophosphate)

    Get PDF
    The asymmetric unit of the title complex, [Ag2(C22H30N4)2](PF6)2, consists of one AgI ion, one 1,4-bis­[(3-butyl­imidazolium-1-yl)meth­yl]benzene ligand and one discrete hexa­fluoridophosphate anion. The formula unit is generated by an inversion center. The unique AgI ion is coordinated by two C atoms of two heterocyclic carbene ligands in an essentially linear geometry. In the crystal structure, cations and anions are linked through weak C—H⋯F hydrogen bonds, forming a three-dimensional network

    Nutrient Removal & Greenhouse Gas Abatement with CO\u3csub\u3e2\u3c/sub\u3e Supplemented Algal High Rate Ponds

    Get PDF
    High rate algae ponds fed clarified domestic wastewater and CO2-rich flue gas are expected to remove nutrients to concentrations similar to those achieved in mechanical treatment technologies, such as activated sludge. However, the energy intensity of wastewater treatment with CO2-supplemented high rate ponds (HRPs) would be less than that of mechanical treatments. In conjunction with anaerobic digestion of algal biomass and co-substrates, the algae-based system would produce a substantial excess of electricity. Greenhouse gas abatement from such CO2-HRP/digestion systems would stem mainly from energy conservation and the offset of fossil fuel electricity with biogas-derived electricity. Laboratory experiments showed nutrient removals of \u3e98% for ammonium and \u3e96% for phosphorus with mixed culture microalgae grown on CO2-supplemented primary wastewater effluent. An engineering numerical model for CO2-HRP/digestion facilities (based in part on large-scale algae production under southern California conditions) indicates a potential energy surplus of 330 kWh/ML (1,200 kWh/MG) from biogas-derived electricity, compared to the net energy consumption of about 760 kWh/ML (2,900 kWh/MG) at typical activated sludge facilities with nitrification/denitrification. Considering the net electricity production and energy savings of the CO2-HRP/digestion systems, a greenhouse gas abatement potential of 660 kg CO2eq/ML (2,500 kg CO2eq/MG) treated is expected for a 100-ha facility treating 20 MGD

    Biogas Production from Algae Biomass Harvested at Wastewater Treatment Ponds

    Get PDF
    Waste-grown microalgae are a potentially important biomass for biofuel production. However, most of the 7,000 wastewater treatment ponds systems in the US do not use algae harvesting. Those that do, typically return the biomass to the ponds, where it decomposes on the pond floor, releasing methane to the atmosphere and degrading water quality. Instead, the algae biomass could be processed in anaerobic digesters. Algae typically yield less methane than wastewater sludge (~0.3 vs. 0.40 L CH4/g volatile solids introduced). Ammonia toxicity and recalcitrant cell walls are commonly cited causes of the lower yields. Ammonia toxicity might be counteracted by co-digesting algae with high-carbon organic wastes. This paper describes the state of the current literature on algae digestion and presents new data on co-digestion with organic wastes. The focus of the project is to identify the essential information required for full-scale implementation of algae co-digestion at wastewater treatment plants, including the optimal conditions to maximize the methane yield, the volumetric methane productivity, and net energy production

    REMOVAL OF BORON FROM PRODUCED WATER BY CO-PRECIPITATION / ADSORPTION FOR REVERSE OSMOSIS CONCENTRATE

    Get PDF
    Co-precipitation and absorption methods were investigated for removal of boron from produced water, which is groundwater brought to the surface during oil and natural gas extraction. Boron can be toxic to many crops and often needs to be controlled to low levels in irrigation water. The present research focused on synthetic reverse osmosis (RO) concentrate modeled on concentrate expected from a future treatment facility at the Arroyo Grande Oil Field on the central coast of California. The produced water at this site is brackish with a boron concentration of 8 mg/L and an expected temperature of 80°C. The future overall produced water treatment process will include lime softening, micro-filtration, cooling, ion exchange, and finally RO. Projected boron concentrations in the RO concentrate are 20 to 25 mg/L. Concentrate temperature will be near ambient. This RO concentrate will be injected back into the formation. To prevent an accumulation of boron in the formation, it is desired to reduce boron concentrations in this concentrate and partition the boron into a solid sludge that could be transported out of the area. The primary method explored for boron removal during this study was adsorption and co-precipitation by magnesium chloride. Some magnesium oxide tests were also conducted. Jar testing was used to determine the degree of boron removal as a function of initial concentration, pH, temperature, and reaction time. Synthetic RO concentrate was used to control background water quality factors that could potentially influence boron removal. The standard synthetic RO concentrate contained 8 g NaCl/L, 150 mg Si/L and 30 mg B/L. After synthetic RO concentrate was prepared, amendments (e.g. sulfate, sodium chloride) were added and the pH adjusted to the desired value. Each solution was then carried through a mixing and settling protocol (5 min at 200 RPM, 10 min at 20 RPM, followed by 30 min settling and filtration). Boron concentrations from the jar tests were determined using the Carmine colorimetric method. Boron removal with magnesium chloride was greatest at a pH of 11.0. At this pH 87% of boron was removed using 5.0 g/L MgCl2◦6H2O at 20°C. Mixing time did not greatly affect boron removal for mixing periods of 5 to 1321 minutes. This result indicates equilibrium was achieved during the 45-min experimental protocol. Maximum boron removal was observed in the temperature range of 29°C to 41°C. At 68°C boron removal decreased five-fold compared to the reduction observed at 29°C to 41°C. For treatment of the cool concentrate, this relatively low optimal temperature range gives magnesium chloride an advantage over magnesium oxide, which is effective only at high temperatures. Neither sodium chloride nor sodium sulfate affected boron removal by magnesium chloride for the chloride and sulfate concentrations expected in the produced water at this site. In contrast, silica did inhibit boron removal, with removal decreasing from 30% to 5% when silica concentration was increased from 0 to 100 mmols/L. This result was unexpected because other researchers have reported silica is necessary for effective removal of boron by magnesium chloride. To investigate the reasons for the differing boron removal results for magnesium chloride and magnesium oxide, solids produced by the two reagents were compared using X-ray diffraction spectroscopy (XRD). Solids from magnesium chloride contained 30% amorphous material versus 10% for magnesium oxide. The crystalline components from the magnesium oxide treatment were for the most part magnesium oxide, whereas magnesium chloride crystalline solids were a combination of brucite (Mg(OH)2) and magnesium chloride hydroxide. The greater boron adsorption observed with magnesium chloride could thus either be attributed to the greater surface area of the amorphous precipitate and/or the higher boron affinity of brucite and magnesium chloride hydroxide. Adsorption isotherms were plotted for boron removal by magnesium compounds formed during precipitation. Boron adsorption followed a linear isotherm (r2= 0.92) for boron concentrations up to 37.8 mg B/L. While the data also fit Langmuir and Freundlich models the data fell in the linear range of those models. The linearity of the adsorption curves indicates that adsorption sites for boron were not saturated at these concentrations. The linearity means that higher boron concentrations in the RO concentrate will lead to greater mass removal, up to concentrations of at least 37.8 mg/L boron. Using magnesium chloride, boron removal by co-precipitation was more effective than by adsorption to pre-formed precipitate. Removal approximately doubled for a given dose of magnesium chloride. The effectiveness of co-precipitation presumably occurs due to entrapment of boron as the precipitate forms. This study has shown the potential of magnesium chloride as an agent for boron removal by determining those conditions most effective for boron co-precipitation and adsorption. Magnesium chloride has been shown to be more effective than magnesium oxide. Magnesium chloride also out-performed treatment with slaked quicklime, which was tested previously by others. Two important limitations of boron removal with magnesium chloride are the high chemical requirements (5 g/L MgCl2) and sludge production (1 g/g MgCl2 used). These are greatly mitigated by treatment of RO concentrate rather than the full produced water flow. In addition, reagent use and sludge production might be decreased by recycling sludge from the up-front lime softening process. Compared to magnesium oxide, magnesium chloride removes greater quantities of boron per mole of magnesium added (20 mg B/g MgCl2). The magnesium chloride isotherm demonstrated that treatment of RO concentrate required less reagent and produced less sludge per mass of boron removed than treatment of the more dilute feed water

    3D Analysis of Artificial Seabed for a Floating Bridge with Tunnel across Sognefjorden

    No full text
    This Master's thesis deals with the artificial seabed, a concept by ÅF Reinertsen. The Python code ASAT, which uses Abaqus to run analyses, is upgraded. ASAT does now include the option to run analyses with water current and an elastic wire. In addition are aspects of the installation of the bundles, which is a part of the artificial seabed, investigated, where water current and buoyancy are taken into account. The objective is to find a required configuration of barges and vessels during the installation

    Integral microalgae-bacteria model (BIO_ALGAE): application to wastewater high rate algal ponds

    Get PDF
    An integral mechanistic model describing the complex interactions in mixed algal-bacterial systems was developed. The model includes crucial physical, chemical and biokinetic processes of microalgae as well as bacteria in wastewater. Carbon-limited microalgae and autotrophic bacteria growth, light attenuation, photorespiration, temperature and pH dependency are some of the new features included. The model named BIO_ALGAE was built using the general formulation and structure of activated sludge models (ASM), and it was implemented in COMSOL Multiphysics™ platform. Calibration and validation were conducted with experimental data from two identical pilot HRAPs receiving real wastewater. The model was able to simulate the dynamics of different components in the ponds, and to predict the relative proportion of microalgae (58–68% in average of total suspended solids (TSS) and bacteria (30–20% in average of TSS). Microalgae growth resulted strongly influenced by the light factor fL(I), decreasing microalgae concentrations from 40 to 60%. Furthermore, reducing the influent organic matter concentration of 50% and 70%, model predictions indicated that microalgae production increased from (8.7 g TSS m- 2d- 1 to 13.5 g TSS m- 2d- 1) due to the new distribution of particulate components. The proposed model could be an efficient tool for industry to predict the production of microalgae, as well as to design and optimize HRAPs.Peer ReviewedPostprint (author's final draft

    Policy-Based Management and Sharing of Sensitive Information among Government Agencies

    No full text
    We propose a set of policy-based technologies to enable increased information sharing among government agencies without compromising information security or individual privacy. Our approach includes: (1) finegrained access controls that support deny and filter semantics to satisfy complex policy conditions; (2) a sticky policy capability that allows consolidation of information from multiple sources subject to the original disclosure policies of each source; (3) a curation organization that enables agencies to apply and manipulate item-level security classifications and disclosure policies; (4) an auditing system that accounts for the curation history of each information item; and (5) a provenance auditing method that traces derivations of information over time to support evaluations of information quality. Our goal is to present a vision for solving outstanding information sharing problems in government agencies and provide direction for the development of future government information systems. 1
    corecore