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Abstract. Waste-grown microalgae are a potentially important biomass for biofuel production. However, most of the 7,000 
wastewater treatment ponds systems in the US do not use algae harvesting.  Those that do, typically return the biomass to the 
ponds, where it decomposes on the pond floor, releasing methane to the atmosphere and degrading water quality.  Instead, the 
algae biomass could be processed in anaerobic digesters.  Algae typically yield less methane than wastewater sludge (~0.3 vs. 0.40 
L CH4/g volatile solids introduced).  Ammonia toxicity and recalcitrant cell walls are commonly cited causes of the lower yields.  
Ammonia toxicity might be counteracted by co-digesting algae with high-carbon organic wastes.  This paper describes the state of 
the current literature on algae digestion and presents new data on co-digestion with organic wastes.  The focus of the project is to 
identify the essential information required for full-scale implementation of algae co-digestion at wastewater treatment plants, 
including the optimal conditions to maximize the methane yield, the volumetric methane productivity, and net energy production. 
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Introduction 
Waste-grown microalgae are a potentially important biomass for biofuel production. However, most of the 7,000 wastewater 

treatment ponds systems in the US do not use algae harvesting. Those that do, typically return the biomass to the ponds, where it 
decomposes on the pond floor, releasing methane to the atmosphere and degrading water quality.  Instead, the algae biomass could 
be processed for lipid extraction to be used in transportation fuel, or it can be anaerobically digested to make biogas (US DOE 2009, 
Brune et al. 2009). Waste-grown algae have widely varying lipid contents, and the technologies for lipid extraction are still under 
development (Woertz et al. 2009).  Thus, anaerobic digestion is likely to be the near-term, appropriate use of algae biomass at 
wastewater treatment plants.  However, algae typically yield less methane than wastewater sludge (~0.3 vs. 0.4 L CH4/g volatile 
solids introduced). Ammonia toxicity and recalcitrant cell walls are commonly cited causes of the lower yields.  Ammonia toxicity 
might be counteracted by co-digesting algae with high-carbon organic wastes.  Carbon-rich feedstocks that are available near major 
wastewater pond systems include primary and secondary municipal sludge, sorted municipal organic solid waste, waste fats-oils
greases (FOGs), food industry waste, waste paper, and various agricultural residues. Acclimation of the digester microbial 
community to algae digestion may also improve the yield. 

Microalgae have two major advantages over higher plants with respect to biofuels production.  First, biomass productivities are 
significantly greater for microalgae, with productivities projected at about 70 metric tons per hectare-year of ash-free dry weight 
(i.e. organic matter) in specialized growth reactors, such as high rate ponds (Sheehan et al. 1998).  This productivity compares well 
with terrestrial temperate crops (e.g., 3 MT/ha·yr for soybeans, 9 MT/ha·yr for corn, and 10-13 MT/ha·yr for switchgrass or hybrid 
poplars [Perlack et al. 2005]). Second, the cultivation of microalgae does not require arable land or fresh water - it can be carried 
out in shallow ponds on hardpan soils, using saline or brackish water. 

Relatively few studies have been published on the anaerobic digestion of microalgae (reviewed recently by Sialve et al. 2009). 
The earliest work compared digestion of domestic wastewater sludge and green microalgal biomass, Scenedesmus and Chlorella, 
harvested from wastewater ponds (Golueke et al. 1957).  They found that these algae could yield as much as 0.25-0.50 L CH4/g VS 
input at an 11-day retention time when incubated at 35-50°C. (Methane yield is typically expressed as liters of methane produced 
per gram of volatile solids introduced into a digester.) The lower value was 32% less than the yield from the wastewater sludge.  In 
addition, the maximum VS destruction was about 45% for the algae, compared to 60% for the wastewater sludge.  They suggested 
that the relatively low digestability and thus yield of microalgal biomass was the result of cell walls resisting bacterial degradation, 
but being more readily digested by bacteria at the higher temperature.  Later laboratory studies with waste-grown algae essentially 



 
  

   
 

   

  

 
 

   
   

   

 
   

 
   

 

 

 
  

 

 

 
 

  

  
  

 

  

    
  

 
 

 
 

 

  
 

    

 
 

 
 

 

 

    
  

 
 

 
 

confirmed the results of Golueke et al. (Uziel et al. 1978, Eisenberg et al. 1979), and the relatively low yield was reproduced at full-
scale at the City of Sunnyvale, California wastewater treatment plant years later (EOA-Bracewell Engineering 1988).  Digestion of 
the cyanobacterium Spirulina maxima again gave similar yield results (Samson and LeDuy 1983). 

Cell wall disruption is a strategy for increasing digestion. Chen and Oswald (1998) evaluated thermochemical pretreatment of 
green microalgae biomass, also harvested from wastewater ponds, finding that methane production rates increased by one third 
when the biomass was pretreated at 100°C for 8 hours at a solids concentration of 3.7%.  However, they did not consider the energy 
balance of the process. 

As mentioned above, inhibitory ammonia concentrations might also be a cause of low methane yields from algae digestion 
(Parkin and Owen 1986).  Algae biomass typically has a high protein content (40-50%; C:N ratio.6:1), which contributes to high 
total ammonia concentrations in the sludge.  Co-digestion with high-carbon, low-nitrogen substrates has potential for diminishing 
any ammonia toxicity and also increasing the biogas production per unit volume of digester tank. Methane yield and productivity 
were doubled when equal masses of wastewater sludge and Spirulina biomass were co-digested (Samson and LeDuy 1983). 
Similarly, Yen (2004) and Yen and Brune (2007) added waste paper (50% w/w) to aquacultural microalgal sludge to adjust the C:N 
ratio to around 20-25:1 which, in turn, doubled the methane production rate from 0.6 L/L day to 1.2 L/L day at 35°C and with a 
hydraulic retention time of 10 days. 

The present research initiative strives to present new data on co-digestion with organic wastes.  The focus of the project is to 
identify the essential information required for full-scale implementation of algae co-digestion at wastewater treatment plants, 
including the optimal conditions to maximize the methane yield, the volumetric methane productivity, and net energy production. 
The first phase of the overall research project includes characterization of different organic wastes, as well as laboratory-scale batch 
experiments at CDM and semi-continuous experiments at Cal Poly. Co-substrates used in experiments thus far are soybean oil (to 
mimic waste grease), glycerin (a biodiesel production byproduct), and primary wastewater sludge (not covered in this paper).  These 
preliminary tests will determine which waste streams are most beneficial to use as a co-digestion feedstock.   

Materials and Methods 
Two rounds of algae digestion batch experiments have been completed thus far.  The first round focused on two primary 

variables:  amount of algae per a given amount of inoculum, and the presence of soybean oil as a codigestion feedstock.  The second 
round sought to further refine the optimal algae loading, and examined biodiesel glycerin (the primary byproduct of biodiesel 
production) as a codigestion feedstock. 

The method was the same for each round.  All conditions were run in triplicate, and six different conditions were tested per 
round (for a total of 18 experimental bottles per round).  The 260-mL serum bottles were incubated on a shaker table/water bath at 
120 rpm and 30°C.  The contents for the six different experimental conditions are shown in Table 1.  After adding the amounts of 
each component shown in Table 1 to each bottle, the bottles were capped, sparged with nitrogen gas, and placed in the shaker table. 
Gas production was measured daily by inserting a needle attached to a frictionless syringe through the septum and allowing the 
headspace to equilibrate with atmospheric pressure.  The compositions of the headspaces were analyzed by gas chromatograph with 
a flame ionization detector (GC-FID) near the end of the experiment. 

Table 1.  Components of Round 1 Experiments. 
EXPERIMENTAL PLAN 

Bottle Number Inoculum (mL) Algae (mL) Soybean Oil (mL) 
1 – 3 90 
4 – 6 90 9 
7 – 9 90 18 

10 – 12 90 9 0.5 
13 – 15 90 18 0.5 
16 – 18 90 0.5 

The inoculum for Round 1 was a mixture of digester effluents from two different digesters.  One digester was a full-scale 
municipal anaerobic digester at the King County South Plant in Renton, WA.  The second was from a lab-scale digester at Cal Poly 
being fed algae.  The two digester seeds were mixed in equal proportions.  This mixed inoculum was tested for both volatile solids 
(VS) and chemical oxygen demand (COD).  The VS of the inoculum was 2.2%, and the COD was 50 g/L.  The algae used in these 
experiments were 12% VS, and had a COD level of 250 g/L. The soybean oil used was store-bought, and was 100% VS, and 1800 
g/L COD. 

The second round sought to refine the maximum loading of algae to the digester bottles.  Since in the first round the bottles that 
received 18 mL of algae performed better than those that only received 9 mL, the second round increased the algae added to 36 mL 
per bottle. Also, because we wanted to perform experiments using a codigestion feedstock that may be available to wastewater 
treatment plants, we examined biodiesel glycerin, the primary byproduct of biodiesel production.  The experimental conditions for 
the serum bottles in Round 2 can be seen in Table 2. 

Table 2.  Components of Round 2 Experiments 
EXPERIMENTAL PLAN 

Bottle Number Inoculum (mL) Algae (mL) Glycerin (mL) 
1 – 3 90 
4 – 6 90 18 
7 – 9 90 36 

10 – 12 90 18 0.082 
13 – 15 90 36 0.082 
16 – 18 90 0.082 



 
 

 

 
 

 

 
 

 
 

 

 

 

 
 

 

 
 

   

 
  

Results and Discussion 
Round 1 – Soybean Oil 

The results of this round of experiments can be seen in Figure 1.  It is obvious from this graph there is a substantial amount of 
acclimation occurring.  The two conditions that contained oil were impeded in their biogas production for two weeks, before they 
increased their biogas production rate dramatically.  After 4 weeks of the experiment, they had well surpassed the conditions 
without oil.  These results show promise for the typically difficult-to-digest algae biomass in anaerobic digesters. 

Figure 1.  Biogas production from digestion of algae (Round 1 experiments). 

Near the end of the experiment, headspace gas samples from each bottle were analyzed for their methane content.  Table 3 
shows the total biogas produced after 28 days, the percent methane calculated for the biogas produced, and the volume of methane 
produced for each set of bottles.  The highest values, both in terms of biogas production and methane content, were bottles 10-12 
and bottles 13-15, which were the two conditions that received both algae and soybean oil.  Inoculum with algae alone, and with oil 
alone, had lower methane percentages in the headspace. 

Table 3.  Methane Results for the Round 1 Experiments 

Bottle Number Total Biogas after 28 
days (mL) %CH4 CH4 (mL) 

1 – 3 480 58% 279 
4 – 6 852 59% 498 
7 – 9 1294 61% 787 

10 – 12 1419 69% 974 
13 – 15 1794 66% 1178 
16 – 18 550 48% 266 

Round 2 – Biodiesel Glycerin 
The results for Round 2 are shown in Figure 2, and they are significantly different from Round 1.  The first thing to notice is that 

for the first 3 weeks of the experiment, the bottles with 18 mL of algae outperformed the bottles with 36 mL of algae.  This implies 
that there is some inhibition from the excess algae.  The second thing to notice is that the glycerin did not have as profound an effect 
on the biogas production as the oil did.  This is likely due to the fact that less glycerin was added (on a COD basis) than the oil. 
However, it may also be due to some inhibitory effect, such as high sodium or sulfur (both of which are characteristics of waste 
biodiesel glycerin).  Although it is difficult to draw many significant conclusions about how to enact algae digestion at full-scale, 
this preliminary work does suggest that it may be possible for further research to optimize the process. 



 
 

 

 

 

 

  

 
 

 
  

 
 

  
   

    
  

 
   
 

 
 

  
 

 
  

 
    

   
   

 
   

 

Table 2.  Biogas production from digestion of algae (Round 2 experiments). 


Table 4.  Methane and pH Results for the Round 2 Experiments 


Bottle Number Total Biogas after 28 
days (mL) Final pH Value 

1 – 3 372 7.76 
4 – 6 929 7.76 
7 – 9 1205 7.67 

10 – 12 1013 7.81 
13 – 15 1173 7.56 
16 – 18 402 7.82 

 Conclusion 
These experiments show that it is possible to digest algae in anaerobic digesters.  The addition of a high-strength, high-carbon 

waste may balance the high-nitrogen nature of the waste-grown algae. The batch experiments show that acclimation does occur, 
with significant increases in biogas production rate occurring multiple weeks into the tests.  Further experiments are underway to 
help identify the issues, and benefits, of implementing algae co-digestion at full-scale wastewater treatment plant. 
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