219 research outputs found

    Neural Collaborative Filtering

    Full text link
    In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.Comment: 10 pages, 7 figure

    Contractile force is enhanced in Aortas from pendrin null mice due to stimulation of angiotensin II-dependent signaling.

    Get PDF
    Pendrin is a Cl-/HCO3- exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation

    Ethical Issues in the Development of Readiness Cohorts in Alzheimer's Disease Research.

    Get PDF
    There is growing interest in the development of novel approaches to secondary prevention trials in Alzheimer's disease to facilitate screening and recruitment of research participants and to reduce the time and costs associated with clinical trials. Several international research collaborations are setting up research infrastructures that link existing research cohorts, studies or patient registries to establish 'trial-ready' or 'readiness' cohorts. From these cohorts, individuals are recruited into clinical trial platforms. In setting up such research infrastructures, researchers must make ethically challenging design decisions in at least three areas: re-contacting participants in existing research studies, obtaining informed consent for participation in a readiness cohort, and disclosure of Alzheimer's disease-related biomarkers. These ethical considerations have been examined by a dedicated workgroup within the European Prevention of Alzheimer's Dementia (EPAD) project, a trans-European longitudinal cohort and adaptive proof-of-concept clinical trial platform. This paper offers recommendations for the ethical management of re-contact, informed consent and risk disclosure which may be of value to other research collaborations in the process of developing readiness cohorts for prevention trials in Alzheimer's disease and other disease areas.This work was funded through the Ethical Legal and Social Implications work package of the European Prevention of Alzheimer’s Dementia (EPAD) study EPAD receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115736, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. RM was also funded through the UK National Institute of Health Research grant to the Cambridge Biomedical Research Centre

    Heterogeneity of Altered Cytokine Levels Across the Clinical Spectrum of Diabetes in China

    Get PDF
    OBJECTIVE - To determine the relationship between selected cytokines and diabetes in Chinese subjects. RESEARCH DESIGN AND METHODS - Adult patients with recent-onset type 1 diabetes (n = 53), latent autoimmune diabetes in adults (LADA) (n = 250), and type 2 diabetes (n= 285) from multiple centers were compared with normal subjects (n = 196). We centrally tested serum GAD antibodies (GADAs), interleukin-6 (IL-6), lipocalin 2 (LCN2), high-sensitivity C-reactive protein (hs-CRP), and adiponectin. RESULTS - After adjustment for age, sex, and BMI, all diabetes types had increased IL-6 and LCN2 (P < 0.01), and all four cytokines were increased in LADA (P < 0.01). In type 1 diabetes, adiponectin but not hs-CRP was increased (P < 0.01), whereas in type 2 diabetes, hs-CRP but not adiponectin was increased (P < 0.01). Adiponectin was correlated positively with GADA titer and negatively with hs-CRP (P < 0.01 for both). CONCLUSIONS - In China, inflammatory markers are increased in all three major types of diabetes, but probably for different reasons, even in autoimmune diabetes. © 2011 by the American Diabetes Association.link_to_OA_fulltex

    Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry

    Get PDF
    Objectives: Using the prediction of cancer outcome as a model, we have tested the hypothesis that through analysing routinely collected digital data contained in an electronic administrative record (EAR), using machine-learning techniques, we could enhance conventional methods in predicting clinical outcomes. Setting: A regional cancer centre in Australia. Participants: Disease-specific data from a purpose-built cancer registry (Evaluation of Cancer Outcomes (ECO)) from 869 patients were used to predict survival at 6, 12 and 24 months. The model was validated with data from a further 94 patients, and results compared to the assessment of five specialist oncologists. Machine-learning prediction using ECO data was compared with that using EAR and a model combining ECO and EAR data. Primary and secondary outcome measures: Survival prediction accuracy in terms of the area under the receiver operating characteristic curve (AUC). Results: The ECO model yielded AUCs of 0.87 (95% CI 0.848 to 0.890) at 6 months, 0.796 (95% CI 0.774 to 0.823) at 12 months and 0.764 (95% CI 0.737 to 0.789) at 24 months. Each was slightly better than the performance of the clinician panel. The model performed consistently across a range of cancers, including rare cancers. Combining ECO and EAR data yielded better prediction than the ECO-based model (AUCs ranging from 0.757 to 0.997 for 6 months, AUCs from 0.689 to 0.988 for 12 months and AUCs from 0.713 to 0.973 for 24 months). The best prediction was for genitourinary, head and neck, lung, skin, and upper gastrointestinal tumours. Conclusions: Machine learning applied to information from a disease-specific (cancer) database and the EAR can be used to predict clinical outcomes. Importantly, the approach described made use of digital data that is already routinely collected but underexploited by clinical health systems

    Anthropogenic infection of cats during the 2020 covid-19 pandemic

    Get PDF
    COVID-19 is a severe acute respiratory syndrome (SARS) caused by a new coronavirus (CoV), SARS-CoV-2, which is closely related to SARS-CoV that jumped the animal–human species bar-rier and caused a disease outbreak in 2003. SARS-CoV-2 is a betacoronavirus that was first described in 2019, unrelated to the commonly occurring feline coronavirus (FCoV) that is an alphacoronavirus associated with feline infectious peritonitis (FIP). SARS-CoV-2 is highly contagious and has spread globally within a few months, resulting in the current pandemic. Felids have been shown to be susceptible to SARS-CoV-2 infection. Particularly in the Western world, many people live in very close contact with their pet cats, and natural infections of cats in COVID-19-positive households have been described in several countries. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European Countries, discusses the current status of SARS-CoV infections in cats. The review examines the host range of SARS-CoV-2 and human-to-animal transmissions, including infections in domestic and non-domestic felids, as well as mink-to-human/-cat transmission. It summarises current data on SARS-CoV-2 prevalence in domestic cats and the results of experimental infections of cats and provides expert opinions on the clinical relevance and prevention of SARS-CoV-2 infection in cats

    Influenza virus infections in cats

    Get PDF
    In the past, cats were considered resistant to influenza. Today, we know that they are susceptible to some influenza A viruses (IAVs) originating in other species. Usually, the outcome is only subclinical infection or a mild fever. However, outbreaks of feline disease caused by canine H3N2 IAV with fever, tachypnoea, sneezing, coughing, dyspnoea and lethargy are occasionally noted in shelters. In one such outbreak, the morbidity rate was 100% and the mortality rate was 40%. Recently, avian H7N2 IAV infection occurred in cats in some shelters in the USA, inducing mostly mild respiratory disease. Furthermore, cats are susceptible to experimental infection with the human H3N2 IAV that caused the pandemic in 1968. Several studies indicated that cats worldwide could be infected by H1N1 IAV during the subsequent human pandemic in 2009. In one shelter, severe cases with fatalities were noted. Finally, the highly pathogenic avian H5N1 IAV can induce a severe, fatal disease in cats, and can spread via cat-to-cat contact. In this review, the Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, summarises current data regarding the aetiology, epidemiology, pathogenesis, clinical picture, diagnostics, and control of feline IAV infections, as well as the zoonotic risks

    IL-13 expression by blood T cells and not eosinophils is increased in asthma compared to non-asthmatic eosinophilic bronchitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In asthma interleukin (IL)-13 is increased in the airway compared with non-asthmatic eosinophilic bronchitis. Whether this differential expression is specific to the airway or is more generalised is uncertain.</p> <p>Methods</p> <p>We sought to examine IL-13 expression in peripheral blood T-cells and eosinophils in asthma and non-asthmatic eosinophilic bronchitis. Peripheral blood CD3+ cell and eosinophil intracellular IL-13 expression from subjects with asthma, non-asthmatic eosinophilic bronchitis and healthy controls was assessed. The effect of priming by asthmatic serum on the release of IL-13 by peripheral blood mononuclear cells from healthy subjects was examined and the serum from these subjects was analysed for a range of chemokines and cytokines.</p> <p>Results</p> <p>The median (IQR)% intracellular IL-13 expression by CD3+ cells was increased in asthma [5.3 (2.7–9.8)%; n = 12] compared to non-asthmatic eosinophilic bronchitis [1.1 (0.5–3)%; n = 7] and healthy controls [1.7 (0.2–3%); n = 9] (p = 0.02), but was not significantly different in eosinophils across the groups. IL-13 released from healthy peripheral blood mononuclear cells (n = 10) was increased by asthmatic serum [117 (47.8–198)pg/ml] compared to control [78.5 (42.6–128)pg/ml; p = 0.02), but was not affected by non-asthmatic serum.</p> <p>Conclusion</p> <p>Our findings support the view that IL-13 expression is increased in peripheral blood-derived T cells in asthma and that asthmatic serum up-regulates IL-13 release from healthy peripheral blood mononuclear cells.</p
    corecore