
Machine-learning prediction of cancer
survival: a retrospective study using
electronic administrative records
and a cancer registry

Sunil Gupta,1 Truyen Tran,1,2 Wei Luo,1 Dinh Phung,1 Richard Lee Kennedy,3

Adam Broad,4 David Campbell,4 David Kipp,4 Madhu Singh,4 Mustafa Khasraw,3,4

Leigh Matheson,5 David M Ashley,3,4,5 Svetha Venkatesh1

To cite: Gupta S, Tran T,
Luo W, et al. Machine-
learning prediction of cancer
survival: a retrospective study
using electronic
administrative records
and a cancer registry. BMJ
Open 2014;4:e004007.
doi:10.1136/bmjopen-2013-
004007

▸ Additional material is
available. To view please visit
the journal (http://dx.doi.org/
10.1136/bmjopen-2013-
004007).

Received 13 September 2013
Revised 17 February 2014
Accepted 21 February 2014

For numbered affiliations see
end of article.

Correspondence to
Professor Svetha Venkatesh;
svetha.venkatesh@deakin.
edu.au

ABSTRACT
Objectives: Using the prediction of cancer outcome
as a model, we have tested the hypothesis that through
analysing routinely collected digital data contained in
an electronic administrative record (EAR), using
machine-learning techniques, we could enhance
conventional methods in predicting clinical outcomes.
Setting: A regional cancer centre in Australia.
Participants: Disease-specific data from a purpose-built
cancer registry (Evaluation of Cancer Outcomes (ECO))
from 869 patients were used to predict survival at 6, 12
and 24 months. The model was validated with data from a
further 94 patients, and results compared to the
assessment of five specialist oncologists. Machine-learning
prediction using ECO data was compared with that using
EAR and a model combining ECO and EAR data.
Primary and secondary outcome measures: Survival
prediction accuracy in terms of the area under the receiver
operating characteristic curve (AUC).
Results: The ECO model yielded AUCs of 0.87 (95% CI
0.848 to 0.890) at 6 months, 0.796 (95% CI 0.774 to
0.823) at 12 months and 0.764 (95% CI 0.737 to 0.789) at
24 months. Each was slightly better than the performance
of the clinician panel. The model performed consistently
across a range of cancers, including rare cancers.
Combining ECO and EAR data yielded better prediction
than the ECO-based model (AUCs ranging from 0.757 to
0.997 for 6 months, AUCs from 0.689 to 0.988 for
12 months and AUCs from 0.713 to 0.973 for 24 months).
The best prediction was for genitourinary, head and neck,
lung, skin, and upper gastrointestinal tumours.
Conclusions:Machine learning applied to information
from a disease-specific (cancer) database and the EAR
can be used to predict clinical outcomes. Importantly, the
approach described made use of digital data that is
already routinely collected but underexploited by clinical
health systems.

INTRODUCTION
Over the past two decades, there has been
an explosion in the use of digital footprints

to monitor and predict human behaviours.
The source of data used for this purpose is
our online use of the internet, the emails we
send and transactions we make. Analysis of
these footprints through machine-learning
techniques (MLT) has been exploited in the
public domain by government and business
to predict behaviours and inform investment
decisions. In research, MLT have also been
used to analyse gene expression data1 2 and
for medical image analysis.3 4 However to
date, there has been little exploration of
these methodologies in the clinical setting.
We hypothesised that MLT may offer a para-
digm shift in clinical medicine that can
address core issues with large and complex
data sets. These techniques offer the poten-
tial to derive adaptive systems from diverse
data sets, discover latent connections
between data items and to predict outcomes.
Most hospitals routinely collect large digital

electronic administrative records (EAR).
These are primarily used for organisational
financial management. Historically, they have
not been used extensively for clinical or
research purposes. If these large data sets are
able to be exploited using MLT, it may open
the way to optimise the use of collected admin-
istrative data to assist in predicting patients’
outcome, planning individualised patient care,
monitoring resource utilisation and improving

Strengths and limitations of this study

▪ This is the first study using machine learning of
administrative and registry data for cancer sur-
vival prediction.

▪ A single prognosis model is produced across all
cancers, improving prediction accuracy on rare
cancers.

▪ This is a retrospective study in a single centre.
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institutional performance.5 6 The accurate assessment of
comorbid status would improve assessment of prognosis
and guide treatment decisions.7–10 Other important infor-
mation that may be contained or inferred from an EAR
includes geographical and demographic data, socio-
economic status and history of healthcare facility
utilisation.2 11 12

In this study, using cancer outcome prediction as a
model, we wished to test the hypothesis that routinely
collected digital health data, if analysed by
state-of-the-art, validated, MLT could be used to assist
conventional tools in predicting clinical outcomes.
Accurate prediction of survival in patients with cancer

remains a challenge due to the ever-increasing hetero-
geneity and complexity of cancer, treatment options and
patient populations. If achieved, reliable predictions
could assist personalised care and treatment, and
improve institutional performance in cancer manage-
ment. In current practice, clinicians use data collected at
the bedside in consultations, medical records or
purpose-built cancer registries to aid prognostication
and decision-making.
The notion of using MLT to predict cancer prognosis

from clinical and pathological data is not a new one.13 14

However, with the advent of more sophisticated and
better validated techniques, not only is more accurate
prediction possible, but the range of data incorporated
into decision aids can be increased.15–17 The need to
improve cancer care systems by creating linkages
between registries and epidemiological surveillance
through analysis of complex and large clinical databases
has recently been highlighted.18 19

In this study, we tested the capability of MLT to
predict patient outcomes in a heterogeneous cohort of
patients with cancer. We have interrogated two data sets:
first, a purpose-built cancer-specific registry (Evaluation
of Cancer Outcomes, ECO, from Victorian Cancer
Outcomes Network in partnership with the Barwon
South Western Regional Integrated Cancer Service) con-
taining demographic and tumour-related data items
according to an Australian nationally agreed protocol;
and second, a hospital digital data set containing infor-
mation about the patient’s previous admissions and pre-
sentations (EAR). Finally, in a test group of 94 patients,
we examined the performance of machine-learning
methods in aiding a panel of expert clinicians in predict-
ing patient survival.

PATIENTS AND METHODS
Study design
This is a retrospective study using the EAR and a specia-
lised cancer registry (ECO) from Barwon Health, the
only public tertiary institution in a region of Australia
with more than 350 000 residents. With a unified hos-
pital identity number in use across the region, Barwon
Health’s EAR provides a single point of access for infor-
mation on patient encounters with the health system,

including hospitalisations, ED visits, medications and
treatments. In addition, the Andrew Love Cancer Centre
at Barwon Health has a specialised cancer registry called
ECO, which captures clinical data for patients in the
region. ECO records information on demographics,
primary tumour and metastatic tumour, cancer stage,
tumour size, lymph nodes and breast tumour-specific
information. Treatment type, outcomes, including death,
and recurrence information (primary and metastatic)
are also recorded. Box 1 shows the variables used for
survival prediction. The cohort for this study consists of
963 patients identified in ECO who were first diagnosed
in year 2009. The study completion date was 31 October
2012; therefore, all patients had at least 2 year and
10 months follow-up. Among these patients, 736 patients
also had records in the EAR.

Analyses
The analyses centred on predicting cancer survival since
the date of diagnosis, defined as the date of tumour
resection. Each patient was a unit of observation in the
predictive problem: patient data collected prior to the
diagnosis date were used to construct the independent
variables; survival status in a period following the assess-
ment was the dependent variable. Two analyses were per-
formed: the first compared survival prediction made by
machine-learning models and the clinician panel, based
on only information from ECO. The second analysis
evaluated the added discriminative power provided by
EAR, by comparing the best machine-learning models
using three sets of predicting variables: variables from

Box 1 Evaluation of Cancer Outcomes (ECO) variables
used for survival prediction

Patient demographics
Post code
Gender
Age

Tumour characteristics
Primary site (in International Classification of Diseases
(ICD)-10 code)
Tumour stream
Morphology (in ICD-O-3 code)
Histological grade
Metastatic sites
Most valid basis of diagnosis
Performance status diagnosis
Stage basis (pathological or clinical)
Stage (TNM)
Tumour size
Nodes taken
Positive nodes

Breast cancer related variables
Oestrogen receptor
Progesterone receptor
Human epidermal growth factor receptor 2 (HER2)
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ECO (box 1), variables from EAR (see online supple-
mentary appendix) and the union of the two.
Although a survival analysis model (eg, a proportional

hazards model20) is commonly used in modelling risk
factors, such models are not designed to predict events.
In this study, survival was directly modelled using classifi-
cation models to optimise prediction accuracy.

Comparing predictions by machine-learning models and
clinician
In the first analysis, all 963 patients in the ECO registry
were randomly divided into a derivation cohort of 869
patients and a validation cohort of 94 patients (table 1).
To collect clinician prediction, patients in the validation
cohort were assigned to a panel of five oncologists for
survival prediction. For each patient, the oncologist was
asked to estimate the survival probabilities based on the
independent variables in box 1. All clinicians estimated
the patient’s survival status by producing a probability
for each of the three time periods—6 months, 1 year
and 2 years. When making this assessment, the clinicians
did not have knowledge of the treatment type offered or
given to the patient. Three machine-learning models
were trained on the derivation cohort using the same set
of independent variables, one for each prediction
period. Each of the machine-learning models was an
ensemble of 400 support vector machines (SVMs)21 with
linear kernel (ie, the output of the model was the
average of 400 SVM outputs in Platt’s a posteriori prob-
abilities22). Ensemble was used to control the variability
introduced by L1 feature selection. Each of the SVMs
was trained using a random 80% subsampling (without
replacement) of the derivation cohort.23 The soft
margin parameter (C) of SVM was selected through
cross-validation. Two measures were taken to improve
the training process. First, to compensate for the imbal-
ance between the two outcomes (there were more

survivals than deaths), we oversampled the non-surviving
cases by 50% in each training subsample. Next, variable
selection was performed through fitting a generalised
linear model with elastic net regularisation24

(α parameter set to 0.1 and λ parameter selected using
fivefold internal cross-validation), and variables with
zero coefficients were removed. After the machine-
learning models were constructed, they were applied to
predict survival probabilities for each patient in the val-
idation cohort. The clinician and model predictions
were validated with the actual outcomes in the ECO
registry. Prediction performance was measured using the
area under the receiver operating characteristic curve
(AUC), also known as the C-statistic,25 and 95% CIs of
AUCs were computed using 1000 bootstrap samples of
validation cohort.

Comparing discriminative information from specialised
registry and routine data
The second analysis compared the discriminative power
of two data sources (ECO and EAR). In this analysis,
clinician predictions were not solicited. Among the 869
patients in the derivation subset of cohort 1, only 664
had records in the EAR and these patients were
included in the second analysis (cohort 2, table 1).
Survival prediction models were derived based on three
sets of independent variables: (1) independent variables
from EAR (EAR only); (2) independent variables from
ECO (ECO only) and (3) the union of the two sets
(EAR+ECO). Similar to the previous analysis, the
models were trained using 400 random subsamples com-
prising 80% data of the cohort 2, and the modelling
process was identical. However, the models were evalu-
ated not using the validation cohort. Instead, for each
80% subsample, the remaining 20% was used to
compute the AUC and its 95%CI.

Table 1 Characteristics of derivation and validation cohorts

Cohort 1: ECO

Cohort 2: ECO and EAR (n=664)Derivation (n=869) Validation (n=94)

Age (SD) 67.6 (14.6) 68.4 (13.6) 66.3 (14.9)

Gender: male 487* 48 381

Tumour stream

Genitourinary 172 21 135

Colorectal 140 14 115

Lung 121 18 96

Breast 122 15 74

Haematological 99 7 85

Upper gastrointestinal 83 9 57

Skin 36 1 28

Head and neck 35 0 30

Gynaecological 19 4 17

CNS 15 1 9

Unknown primary 38 9 26

*Two unspecified.
CNS, central nervous system; EAR, electronic administrative records; ECO, Evaluation of Cancer Outcomes.
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The Wilcoxon rank-sum test was applied to answer the
following comparison problems:
1. Does ECO only provide more discriminative power

than EAR only?
2. Does EAR+ECO provide more discriminative power

than EAR only?
3. Does EAR+ECO provide more discriminative power

than ECO only?
Details of the machine-learning model and the pre-

dictor variables can be found in the online supplemen-
tary appendix.

RESULTS
The cohorts for the two analyses are summarised in
table 1. The comparison between the algorithmic pre-
dictions and the clinician predictions are summarised in
table 2. The model had comparable performance to
that of the clinicians, with the performance of the
machine-learning model marginally better (AUC
ranging from 0.76 to 0.87) than that of the clinicians
(AUC ranging from 0.75 to 0.79) for all three prediction
periods. This similarity in accuracy between algorithmic
predictions and the clinician predictions was observed
across different cancer types. Consider the predictions
for 6-month survival. Of 15 breast cancer cases, the

clinicians made 15 correct predictions and the algo-
rithm made 14; of 18 lung cancer cases, the clinicians
made 13 correct predictions and the algorithm made
14; of 7 haematological cases, the clinicians and the
algorithm made all predictions correctly. Similar results
were observed on 12-month and 24-month survival pre-
dictions for different cancers.
Prediction of 6-month survival using the three models

is shown in table 3. There were no deaths from breast
cancer during this period. Comparing the ECO model
with the EAR model, AUCs were comparable for colo-
rectal, genitourinary, haematological, head and neck,
and skin tumours. The EAR model was significantly
better (p<0.05) for rare tumours, central nervous system
(CNS), upper gastrointestinal and unassigned primary
source tumours. For each tumour type, the model using
ECO and EAR data yielded similar or better perform-
ance than the models using information from only one
of the two databases. AUCs for the combined model
ranged from 0.76 to 1.0. The combined data model
showed particularly improved performance over ECO
data (p < 0.05) for all tumour streams except breast and
CNS tumours.
Data for 12-month survival prediction is shown in

table 4. Cancer-specific ECO data yielded better predic-
tion than EAR data (p<0.05) for gynaecological, haem-
atological, lung, skin and unknown primary cancers.
Otherwise, ECO and EAR models yielded generally
similar results. The model using combined data per-
formed better than EAR (p<0.05) for all tumour streams
other than CNS, head and neck and upper gastrointes-
tinal tumours. The model using combined data was
better than (p<0.05) ECO for all cancers except breast,
CNS, gynaecological and haematological cancers.
Table 5 shows data for 24-month survival prediction by

the three models. The ECO model yielded superior pre-
diction (p<0.05) to the EAR model for breast,

Table 2 Performance of survival prediction: comparison

between machine-learning method and clinicians

Survival

period

AUC (95% CI)

Clinician panel

Machine-learning

model

6 months 0.79 (0.76 to 0.81) 0.87 (0.85 to 0.89)

1 year 0.79 (0.76 to 0.81) 0.80 (0.77 to 0.82)

2 years 0.75 (0.73 to 0.78) 0.76 (0.74 to 0.79)

AUC, area under the receiver operating characteristic curve.

Table 3 Prediction performance of machine-learning algorithms: 6-month survival

Cancer type

Area under ROC curve (95% CI)

EAR only ECO only EAR+ECO

Genitourinary 0.81 (0.77 to 0.85) 0.82 (0.78 to 0.86) 0.88 (0.85 to 0.91)*,†

Colorectal 0.84 (0.80 to 0.88) 0.85 (0.81 to 0.89) 0.88 (0.84 to 0.91)*,†

Lung 0.71 (0.67 to 0.76) 0.73 (0.69 to 0.77)* 0.77 (0.73 to 0.82)*,†

Breast no deaths in the period

Haematological 0.73 (0.68 to 0.79) 0.74 (0.69 to 79) 0.76 (0.71 to 0.81)

Upper gastrointestinal 0.74 (0.69 to 0.78) 0.64 (0.60 to 69) 0.84 (0.80 to 0.87)†

Skin 0.84 (0.77 to 0.90) 0.85 (0.79 to 91) 0.91 (0.86 to 0.96)*,†

Head and neck 0.66 (0.61 to 0.71) 0.70 (0.64 to 75) 0.77 (0.72 to 0.82)*,†

Gynaecological 0.97 (0.94 to 0.99) 0.99 (0.98 to 1)* 1 (0.99 to 1)*

CNS 0.89 (0.85 to 0.94) 0.84 (0.78 to 0.90) 0.82 (0.77 to 0.88)

Unknown primary 0.92 (0.89 to 0.95) 0.79 (0.75 to 0.84) 0.90 (0.87 to 0.93)*,†

*Significantly greater than EAR only.
†Significantly greater than ECO only.
CNS, central nervous system; EAR, electronic administrative records; ECO, Evaluation of Cancer Outcomes; ROC, receiver operating
characteristic.
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genitourinary, gynaecological, lung, skin and unknown
primary cancers, while the EAR model was superior to
the ECO model for haematological and head and neck
tumours. Once more, the model that performed the
best was that derived from ECO and EAR data with
AUCs ranging from 0.71 to 0.97 across the range of
cancers and particularly enhanced performance for all
cancers except breast, colorectal, gynaecological and
unknown primary tumours compared with the ECO. In
summary, over all time periods, the performance of the
combined model was better than ECO (p<0.05) for
genitourinary, head and neck, lung, skin, and upper
gastrointestinal tumours.
One of the key advantages of using MLT is that it can

combine the large number of non-clinical factors with
the few clinical risk factors. In this study, the model
selected most of the known clinical risk factors including
patient age, cancer staging, performance status and tumour
size. In addition, it also found some useful non-clinical
risk factors, including the type of the last hospital

admission (emergency vs elective), the frequency of ED
visits within the previous 3 and 6 months (related to
cancer and other medical conditions).

DISCUSSION
In this study, using cancer outcome prediction as a model,
we wished to test the hypothesis that routinely collected
digital health data, if analysed by MLT, could be used to
assist conventional tools in predicting clinical outcomes.
Applying machine learning to data from the EAR

alone predicted clinical outcomes with reasonable accur-
acy. Using the purpose-built ECO data set, the predictive
tool also performed well across a broad range of cancer
types, and in both cases the predictive accuracies were at
least as good as that of a panel of five expert clinicians.
Importantly, a predictive tool derived from the purpose-
built clinical registry and administrative data had even
greater predictive ability.

Table 4 Prediction performance of machine-learning algorithms: 12-month survival

Cancer type

Area under ROC curve (95% CI)

EAR only ECO only EAR+ECO

Genitourinary 0.79 (0.75 to 0.83) 0.79 (0.75 to 0.83) 0.84 (0.80 to 0.87)*,†

Colorectal 0.82 (0.78 to 0.86) 0.83 (0.79 to 0.86) 0.87 (0.83 to 0.90)*,†

Lung 0.73 (0.69 to 0.77) 0.78 (0.73 to 0.82)* 0.82 (0.78 to 0.86)*,†

Breast 0.71 (0.65 to 0.78) 0.90 (0.86 to 0.94) 0.92 (0.89 to 0.96)*

Haematological 0.63 (0.59 to 0.68) 0.70 (0.66 to 0.75)* 0.69 (0.64 to 0.74)*

Upper gastrointestinal 0.62 (0.57 to 0.66) 0.70 (0.65 to 0.74)* 0.72 (0.68 to 0.76)*

Skin 0.76 (0.71 to 0.88) 0.89 (0.85 to 0.93)* 0.93 (0.90 to 0.96)*

Head and neck 0.77 (0.73 to 0.88) 0.68 (0.63 to 0.73) 0.79 (0.75 to 0.84)†

Gynaecological 0.95 (0.92 to 0.97) 1 (1 to 1)* 0.99 (0.98 to 1)*

CNS 0.66 (0.58 to 0.73) 0.68 (0.61 to 0.76) 0.69 (0.63 to 0.76)

Unknown primary 0.87 (0.84 to 0.91) 0.81 (0.77 to 0.85) 0.88 (0.84 to 0.91)

*Significantly greater than EAR only.
†Significantly greater than ECO only.
CNS, central nervous system; EAR, electronic administrative records; ECO, Evaluation of Cancer Outcomes; ROC, receiver operating characteristic.

Table 5 Prediction performance of machine-learning algorithms: 24-month survival

Area under the ROC curve (AUC)

Cancer type EAR only ECO only EAR+ECO

Genitourinary 0.73 (0.69 to 0.78) 0.84 (0.81 to 0.88)* 0.86 (0.82 to 0.89)*,†

Colorectal 0.76 (0.72 to 0.80) 0.76 (0.72 to 0.80) 0.76 (0.72 to 0.80)

Lung 0.74 (0.69 to 0.78) 0.78 (0.73 to 0.82)* 0.82 (0.79 to 0.86)*,†

Breast 0.67 (0.61 to 0.73) 0.86 (0.82 to 0.90)* 0.88 (0.84 to 0.92)*

Haematological 0.73 (0.68 to 0.77) 0.70 (0.66 to 0.75) 0.80 (0.76 to 0.84)*,†

Upper gastrointestinal 0.81 (0.77 to 0.85) 0.77 (0.72 to 0.81) 0.87 (0.83 to 0.9)*,†

Skin 0.71 (0.65 to 0.76) 0.85 (0.8 to 0.89)* 0.94 (0.92 to 0.97)*,†

Head and neck 0.74 (0.7 to 0.78) 0.66 (0.51 to 0.61) 0.71 (0.67 to 0.76)†

Gynaecological 0.96 (0.94 to 0.99) 0.99 (0.98 to 1)* 0.97 (0.95 to 0.99)

CNS 0.83 (0.78 to 0.89) 0.87 (0.82 to 0.93) 0.96 (0.93 to 0.99)*,†

Unknown primary 0.74 (0.7 to 0.79) 0.78 (0.74 to 0.82)* 0.8 (0.76 to 0.84)*

*Significantly greater than EAR only.
†Significantly greater than ECO only.
CNS, central nervous system; EAR, electronic administrative records; ECO, Evaluation of Cancer Outcomes; ROC, receiver operating
characteristic.
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The wealth of administrative data contained in the EAR
includes information on comorbid conditions and previ-
ous clinic and hospital attendances as well as a drug
history. There is considerable potential to use this data to
improve clinical care across a spectrum of diseases.5 6

Most patients in the study were followed up for
3 years, which may not be adequate to capture all onco-
logical outcomes, especially for those cancers with low
mortality rate. We have designed this study as retrospect-
ive and in a single centre; it will be of major interest to
observe how it performs in a variety of settings. The
number of cases used to assess performance of the
models is relatively small. The strengths include the
comparison of machine-learning tools with expert clin-
ical opinion and the fact that very detailed and well-
validated data was available both directly related to the
cancer and that contained in the EAR. The generic
nature of this approach makes it unnecessary to gener-
ate separate predictive models for different types of
cancer. This was a particular advantage for rarer forms
of cancer where predications using more conventional
methods are very challenging.
Predictive tools derived from clinical data items have

considerable potential to improve clinical care, but
must be suitably optimised and shown to perform
equally well in diverse clinical settings.26 27 Clinical
databases have become more widely available and
increasingly complex in recent years. The extent and
complexity of data available to clinicians means that
novel approaches to managing data and supporting
clinical decisions are needed. Machine-learning
approaches can not only cope with complex data sets,
but also adapt in real time and across different clinical
settings.
The approach used in this study offers superior per-

formance to previous machine-learning approaches in
predicting cancer survival.13–17 Previous models have
been derived for single cancer types, or for a limited
range of cancers. The model described here performed
well across a wide range of cancers. One advantage of
this generic approach may be the ability to predict out-
comes in less common cancers where limited data might
preclude development of specific models. The fact that
our model derived from administrative and cancer-
related data performed slightly better than a panel of
expert clinicians validates the potential utility of the
model and suggests that it may be useful in assessing
quality of care and also in settings where specialist care
is not available. An alternative approach to borrow infor-
mation across different cancer types is called multitask
learning. We are currently exploring this approach as
well.
Clinical outcomes in any illness are determined by

specific factors related to the illness itself and also by the
patient’s general state of health and by the presence of
other chronic medical conditions often coded in an
EAR if the individual traffics the health service.7–10 As
well, a particularly novel and important aspect of the use

of historical data from the EAR in machine learning is
that it effectively captures the healthcare institution’s
current and previous performance. These data can be
applied to any individual entering the system with a
newly diagnosed cancer, as we have modelled here. As
well, they could also be used for quality and perform-
ance monitoring.
In conclusion, machine learning applied to informa-

tion from a disease-specific (cancer) database and the
EAR can be used to predict outcomes. Improved predic-
tion of outcome has the potential to help clinicians
make more meaningful decisions about treatment and
to assist with planning of future social and care needs.
Most importantly, the approach described makes use of
digital data that is already routinely collected but under-
exploited by clinical health systems.
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