7 research outputs found

    Formin Homology 2 Domain Containing 3 (FHOD3) Is a Genetic Basis for Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: The genetic cause of hypertrophic cardiomyopathy remains unexplained in a substantial proportion of cases. Formin homology 2 domain containing 3 (FHOD3) may have a role in the pathogenesis of cardiac hypertrophy but has not been implicated in hypertrophic cardiomyopathy. OBJECTIVES: This study sought to investigate the relation between FHOD3 mutations and the development of hypertrophic cardiomyopathy. METHODS: FHOD3 was sequenced by massive parallel sequencing in 3,189 hypertrophic cardiomyopathy unrelated probands and 2,777 patients with no evidence of cardiomyopathy (disease control subjects). The authors evaluated protein-altering candidate variants in FHOD3 for cosegregation, clinical characteristics, and outcomes. RESULTS: The authors identified 94 candidate variants in 132 probands. The variants' frequencies were significantly higher in patients with hypertrophic cardiomyopathy (74 of 3,189 [2.32%]) than in disease control subjects (18 of 2,777 [0.65%]; p < 0.001) or in the gnomAD database (1,049 of 138,606 [0.76%]; p < 0.001). FHOD3 mutations cosegregated with hypertrophic cardiomyopathy in 17 families, with a combined logarithm of the odds score of 7.92, indicative of very strong segregation. One-half of the disease-causing variants were clustered in a small conserved coiled-coil domain (amino acids 622 to 655); odds ratio for hypertrophic cardiomyopathy was 21.8 versus disease control subjects (95% confidence interval: 1.3 to 37.9; p < 0.001) and 14.1 against gnomAD (95% confidence interval: 6.9 to 28.7; p < 0.001). Hypertrophic cardiomyopathy patients carrying (likely) pathogenic mutations in FHOD3 (n = 70) were diagnosed after age 30 years (mean 46.1 ± 18.7 years), and two-thirds (66%) were males. Of the patients, 82% had asymmetric septal hypertrophy (mean 18.8 ± 5 mm); left ventricular ejection fraction <50% was present in 14% and hypertrabeculation in 16%. Events were rare before age 30 years, with an annual cardiovascular death incidence of 1% during follow-up. CONCLUSIONS: FHOD3 is a novel disease gene in hypertrophic cardiomyopathy, accounting for approximately 1% to 2% of cases. The phenotype and the rate of cardiovascular events are similar to those reported in unselected cohorts. The FHOD3 gene should be routinely included in hypertrophic cardiomyopathy genetic testing panels

    The European Solar Telescope

    Get PDF
    The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems

    The Principles of Menu Making (Second Edition)

    No full text
    Determining the distribution of disease prevalence among heterogeneous populations at the national scale is fundamental for epidemiology and public health. Here, we use a combination of methods (spatial scan statistic, topological data analysis, epidemic profile) to study measurable differences in malaria intensity by regions and populations of Colombia. This study explores three main questions: What are the regions of Colombia where malaria is epidemic? What are the regions and populations in Colombia where malaria is endemic? What associations exist between epidemic outbreaks between regions in Colombia? \textit{Plasmodium falciparum} is most prevalent in the Pacific Coast, some regions of the Amazon Basin, and some regions of the Magdalena Basin. \textit{Plasmodium vivax} is the most prevalent parasite in Colombia, particularly in the Northern Amazon Basin, the Caribbean, and municipalities of Sucre, Antioquia and Cordoba. Malaria has been reported to be most common among 15-45 year old men. We find that the age-class suffering high risk of malaria infection ranges from 20 to 30 with an acute peak at 25 years of age. Second, this pattern was not found to be generalizable across Colombian populations, Indigenous and Afrocolombian populations experience endemic malaria (with household transmission). Third, clusters of epidemic malaria for \textit{Plasmodium vivax} were detected across Southern Colombia including the Amazon Basin and the Southern Pacific region. \textit{Plasmodium falciparum}, was is epidemic in 13 of the 1,123 municipalities (1.2\%). Some key locations act as bridges between epidemic and endemic regions. Finally, we generate a regional classification based on intensity and synchrony, dividing the country into epidemic areas and bridge areas

    Neurobiology of Stress-Induced Hyperalgesia

    No full text

    Quiet Sun magnetic fields: an observational view

    No full text

    Adapting to obesity with adipose tissue inflammation

    No full text
    corecore