101 research outputs found

    Influence of ceramic thickness on mechanical properties and polymer structure of dual-cured resin luting agents.

    Get PDF
    OBJECTIVE: To investigate the influence of ceramic thickness on the mechanical properties and polymer structure (degree conversion and cross-linking density) of three dual-cured resin luting agents. METHODS: Three dual-cured resin luting agents [Linkmax HV (GC), Nexus 2 (Kerr), and Variolink IIHV (Ivoclar-Vivadent)] were polymerized with or without 800mW/cm(2) irradiation through 0-3-mm-thick GN-I (GC) machinable ceramic. Bar-shape specimens were subjected to three-point bending to determine flexural strength (FS) and elastic modulus (EM) after dry storage at 37 degrees C for 24h. Knoop hardness was measured on the irradiated surface of disk-shaped specimens before (KHN1) and after (KHN2) storage of 100% ethanol solution at 37 degrees C for 24h. KHN1 and KHN2 were estimated as indirect indicators of degree of conversion (DC) and cross-linking density, respectively. Data were analyzed by one-way ANOVA and Student-Newman-Keuls test for each luting agent, and four mechanical properties were subjected to regression analysis. RESULTS: For three resin luting agents with dual-cured mode, FS, EM, KHN1, and KHN2 decreased with the increase of ceramic thickness. FS except for Nexus 2 and EM for three resin luting agents had a positive linear relationship with both KHN1 and KHN2. SIGNIFICANCE: The variables tested behaved differently. When the ceramic thickness increased, the chemical cured components of dual-cured resin luting agents did not produce significant compensation for all variables. Mechanical properties and polymer structure of dual-cured resin luting agents was dependent on the intensity of light irradiation

    New nanocomposite proton conducting membranes based on a core–shell nanofiller for low relative humidity fuel cells

    Get PDF
    New hybrid inorganic-organic proton conducting membranes containing a ZrTa nanofiller dispersed in a Nafion® matrix are described. The ZrTa nanofiller exhibits a "core-shell" morphology, where the harder ZrO2 forms the "core", which is covered by a "shell" of the softer Ta2O5. The hybrid membranes are thermally stable up to 170 °C. Interactions between the polymer matrix and the nanofiller increase the thermal stability of both the -SO3H groups and the fluorocarbon polymer backbone. In comparison with Nafion, the hybrid membranes have a lower water uptake (W.U.) that depends on the concentration of nanofiller. The residual water, which is approximately 4 wt%, is likely located at the Nafion-nanofiller interface. Infrared results indicate that the nanofiller does not neutralize all of the R-SO3H groups in the hybrid membrane and the small amount of residual water in the material does not cause the dissociation of the R-SO3H protons. Fuel cell tests show that the maximum power density yielded by the membrane electrode assembly (MEA) containing the hybrid membrane is better than that of the MEA containing Nafion, particularly at low values of relative humidity. The hybrid membranes require much less water to conduct protons effectively and are more efficient at retaining water than Nafion at low water activities

    Development of intentional contamination in iron by bath for silicon wafers and evaluation of VPD-Bulk and LPD-Bulk for metallic contaminants analyses by ICPMS

    No full text
    International audienceThis paper offers a preliminary study for the analysis of metallic contamination on frontend patterned wafers obtained by two different techniques based on the etching of the whole patterns, LPD-Bulk and VPD-Bulk coupled with an ICPMS. To elaborate the analysis of patterned wafers, methods were first verified and optimised on reference Si wafers. Both techniques are complementary methods for the etching of wafers. LPD-Bulk enables a fast etching of several micrometres of Si but with less precision than VPD-Bulk, which is more adapted for the etching of layers thinner than1 micrometre. The intentional contamination in SC1 and H2O bath of monitoring wafers showed that contamination in H2O is better controlled due to the absence of chemical reactions, competition between oxidation and etching processes occurring during SC1. And diffusion of contaminants at the tested temperatures from 20°C to 80°C, does not occur. Heat treatment should be applied to allow the diffusion of metallic contaminants in the bulk of the wafers

    Interfacial layer characterization in dental composite.

    No full text
    Nowadays, dental resins find increasing use by practitioners. However, photopolymerization of such resins is limited to a so-called 'depth of cure'. To face this problem, dentists superimpose resin layers of limited depth. This technique raises the problem of the quality of interlayer. This paper aims at screening different cases of adhesion at the interface. Shear strength of such interfacial layers is tested in shear mode in various conditions (with or without an oxygen-inhibited layer, or contaminated by saliva or water). Unexpectedly, the presence of an oxygen-inhibition on the first layer, as assessed using micro-Raman spectroscopy, induces higher shear strength. In this case, a cohesive break occurs while an adhesive one is observed in all the other cases

    Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited.

    Get PDF
    Polymerization shrinkage and degree of conversion (DC) of resin composites are closely related manifestations of the same process. Ideal dental composite would show an optimal degree of conversion and minimal polymerization shrinkage. These seem to be antagonistic goals, as increased monomer conversion invariably leads to high polymerization shrinkage values. OBJECTIVES: This paper aims at accurately determining the polymerization volume contraction of experimental neat resins and to link it to the number of actual vinyl double bonds converted in single ones instead of, as generally done, to the degree of conversion. METHODS: Different mixtures of Bis-GMA/TEGDMA (traditionally used monomers) were analyzed. Contraction of the polymers was determined by pycnometry and the use of a density column. DC was determined by the use of Raman spectrometry. RESULTS: An univocal relationship has been found between the volume contraction and the actual number of vinyl double bonds converted into single ones. A contraction value of 20.39 cm3/mole (of converted C=C) was deduced from 27 measurements. SIGNIFICANCE: This relationship helps in finding solutions to the polymerization shrinkage problem. A reduction of the polymerization shrinkage due to the chemical reaction may obviously be expected from the addition of molecules allowing a decrease in the number of double bonds converted per unit volume of resin matrix, while maintaining the degree of conversion (of Bis-GMA and TEGDMA) and thus the mechanical properties. Further research will be directed at this objective

    Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited.

    No full text
    Polymerization shrinkage and degree of conversion (DC) of resin composites are closely related manifestations of the same process. Ideal dental composite would show an optimal degree of conversion and minimal polymerization shrinkage. These seem to be antagonistic goals, as increased monomer conversion invariably leads to high polymerization shrinkage values. OBJECTIVES: This paper aims at accurately determining the polymerization volume contraction of experimental neat resins and to link it to the number of actual vinyl double bonds converted in single ones instead of, as generally done, to the degree of conversion. METHODS: Different mixtures of Bis-GMA/TEGDMA (traditionally used monomers) were analyzed. Contraction of the polymers was determined by pycnometry and the use of a density column. DC was determined by the use of Raman spectrometry. RESULTS: An univocal relationship has been found between the volume contraction and the actual number of vinyl double bonds converted into single ones. A contraction value of 20.39 cm3/mole (of converted C=C) was deduced from 27 measurements. SIGNIFICANCE: This relationship helps in finding solutions to the polymerization shrinkage problem. A reduction of the polymerization shrinkage due to the chemical reaction may obviously be expected from the addition of molecules allowing a decrease in the number of double bonds converted per unit volume of resin matrix, while maintaining the degree of conversion (of Bis-GMA and TEGDMA) and thus the mechanical properties. Further research will be directed at this objective
    corecore