697 research outputs found

    Geothermal studies - Yellowstone National Park /test site 11/, Wyoming

    Get PDF
    Summary report of diamond drilling in thermal areas of Yellowstone National Park, and method for determining heat flow in thermal area

    Prediction of strong shock structure using the bimodal distribution function

    Full text link
    A modified Mott-Smith method for predicting the one-dimensional shock wave solution at very high Mach numbers is constructed by developing a system of fluid dynamic equations. The predicted shock solutions in a gas of Maxwell molecules, a hard sphere gas and in argon using the newly proposed formalism are compared with the experimental data, direct-simulation Monte Carlo (DSMC) solution and other solutions computed from some existing theories for Mach numbers M<50. In the limit of an infinitely large Mach number, the predicted shock profiles are also compared with the DSMC solution. The density, temperature and heat flux profiles calculated at different Mach numbers have been shown to have good agreement with the experimental and DSMC solutionsComment: 22 pages, 9 figures, Accepted for publication in Physical Review

    On the 3D steady flow of a second grade fluid past an obstacle

    Full text link
    We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in \cite{Koch} and properties of solutions to steady transport equation to get up to arbitrarily small \ep the same decay as the Oseen fundamental solution

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP

    Third and fourth degree collisional moments for inelastic Maxwell models

    Full text link
    The third and fourth degree collisional moments for dd-dimensional inelastic Maxwell models are exactly evaluated in terms of the velocity moments, with explicit expressions for the associated eigenvalues and cross coefficients as functions of the coefficient of normal restitution. The results are applied to the analysis of the time evolution of the moments (scaled with the thermal speed) in the free cooling problem. It is observed that the characteristic relaxation time toward the homogeneous cooling state decreases as the anisotropy of the corresponding moment increases. In particular, in contrast to what happens in the one-dimensional case, all the anisotropic moments of degree equal to or less than four vanish in the homogeneous cooling state for d≥2d\geq 2.Comment: 15 pages, 3 figures; v2: addition of two new reference

    Steady shear flow thermodynamics based on a canonical distribution approach

    Full text link
    A non-equilibrium steady state thermodynamics to describe shear flows is developed using a canonical distribution approach. We construct a canonical distribution for shear flow based on the energy in the moving frame using the Lagrangian formalism of the classical mechanics. From this distribution we derive the Evans-Hanley shear flow thermodynamics, which is characterized by the first law of thermodynamics dE=TdS−QdγdE = T dS - Q d\gamma relating infinitesimal changes in energy EE, entropy SS and shear rate γ\gamma with kinetic temperature TT. Our central result is that the coefficient QQ is given by Helfand's moment for viscosity. This approach leads to thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation function of QQ. We emphasize the role of the external work required to sustain the steady shear flow in this approach, and show theoretically that the ensemble average of its power W˙\dot{W} must be non-negative. A non-equilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is equal to the average of W˙\dot{W}. Numerical results from non-equilibrium molecular dynamics simulation of two-dimensional many-particle systems with soft-core interactions are presented which support our interpretation.Comment: 23 pages, 7 figure

    Convective Nonlinearity in Non-Newtonian Fluids

    Full text link
    In the limit of infinite yield time for stresses, the hydrodynamic equations for viscoelastic, Non-Newtonian liquids such as polymer melts must reduce to that for solids. This piece of information suffices to uniquely determine the nonlinear convective derivative, an ongoing point of contention in the rheology literature.Comment: 4 page

    Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

    Full text link
    A compressible flow characterized by a velocity field ux(x,t)=ax/(1+at)u_x(x,t)=ax/(1+at) is analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter (the longitudinal deformation rate aa) distinguishes between an expansion (a>0a>0) and a condensation (a<0a<0) phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear viscosity η∗(a∗)\eta^*(a^*), that depends on the dimensionless longitudinal rate a∗a^*. The Chapman-Enskog expansion of η∗\eta^* in powers of a∗a^* is seen to be only asymptotic (except in the case of Maxwell molecules). The velocity distribution function is also studied. At any value of a∗a^*, it exhibits an algebraic high-velocity tail that is responsible for the divergence of velocity moments. For sufficiently negative a∗a^*, moments of degree four and higher may diverge, while for positive a∗a^* the divergence occurs in moments of degree equal to or larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat flux plus other minor changes added. Revised version accepted for publication in PR

    Unconstrained Hamiltonian formulation of General Relativity with thermo-elastic sources

    Get PDF
    A new formulation of the Hamiltonian dynamics of the gravitational field interacting with(non-dissipative) thermo-elastic matter is discussed. It is based on a gauge condition which allows us to encode the six degrees of freedom of the ``gravity + matter''-system (two gravitational and four thermo-mechanical ones), together with their conjugate momenta, in the Riemannian metric q_{ij} and its conjugate ADM momentum P^{ij}. These variables are not subject to constraints. We prove that the Hamiltonian of this system is equal to the total matter entropy. It generates uniquely the dynamics once expressed as a function of the canonical variables. Any function U obtained in this way must fulfil a system of three, first order, partial differential equations of the Hamilton-Jacobi type in the variables (q_{ij},P^{ij}). These equations are universal and do not depend upon the properties of the material: its equation of state enters only as a boundary condition. The well posedness of this problem is proved. Finally, we prove that for vanishing matter density, the value of U goes to infinity almost everywhere and remains bounded only on the vacuum constraints. Therefore the constrained, vacuum Hamiltonian (zero on constraints and infinity elsewhere) can be obtained as the limit of a ``deep potential well'' corresponding to non-vanishing matter. This unconstrained description of Hamiltonian General Relativity can be useful in numerical calculations as well as in the canonical approach to Quantum Gravity.Comment: 29 pages, TeX forma
    • …
    corecore