12 research outputs found

    Response-time data provide critical constraints on dynamic models of multi-alternative, multi-attribute choice

    No full text
    Understanding the cognitive processes involved in multi-alternative, multi-attribute choice is of interest to a wide range of fields including psychology, neuroscience, and economics. Prior investigations in this domain have relied primarily on choice data to compare different theories. Despite numerous such studies, results have largely been inconclusive. Our study uses state-of-the-art response-time modeling and data from 12 different experiments appearing in six different published studies to compare four previously proposed theories/models of these effects: multi-alternative decision field theory (MDFT), the leaky-competing accumulator (LCA), the multi-attribute linear ballistic accumulator (MLBA), and the associative accumulation model (AAM). All four models are, by design, dynamic process models and thus a comprehensive evaluation of their theoretical properties requires quantitative evaluation with both choice and response-time data. Our results show that response-time data is critical at distinguishing among these models and that using choice data alone can lead to inconclusive results for some datasets. In conclusion, we encourage future research to include response-time data in the evaluation of these models

    The Potential of Quantum Probability for Modeling Cognitive Processes

    No full text
    Quantum probability (QP) theory is a theory for how to assign probabilities to observables. In the context of physics, it has been successfully employed by researchers for over 100 years and has been the basis for some of the most impressive discoveries of the human mind (e.g., the transistor, and so the microchip, and the laser). But the applicability of QP theory is not limited to physical phenomena and, indeed, there has been growing interest in exploring the potential of QP theory in areas as diverse as economics (Baaquie, 2004), information theory (e.g., Grover, 1997), and psychology

    The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models

    No full text
    Most data analyses rely on models. To complement statistical models, psychologists have developed cognitive models, which translate observed variables into psychologically interesting constructs. Response time models, in particular, assume that response time and accuracy are the observed expression of latent variables including 1) ease of processing, 2) response caution, 3) response bias, and 4) non-decision time. Inferences about these psychological factors hinge upon the validity of the models' parameters. Here, we use a blinded, collaborative approach to assess the validity of such model-based inferences. Seventeen teams of researchers analyzed the same 14 data sets. In each of these two-condition data sets, we manipulated properties of participants' behavior in a two-alternative forced choice task. The contributing teams were blind to the manipulations, and had to infer what aspect of behavior was changed using their method of choice. The contributors chose to employ a variety of models, estimation methods, and inference procedures. Our results show that, although conclusions were similar across different methods, these "modeler's degrees of freedom" did affect their inferences. Interestingly, many of the simpler approaches yielded as robust and accurate inferences as the more complex methods. We recommend that, in general, cognitive models become a typical analysis tool for response time data. In particular, we argue that the simpler models and procedures are sufficient for standard experimental designs. We finish by outlining situations in which more complicated models and methods may be necessary, and discuss potential pitfalls when interpreting the output from response time models
    corecore