68 research outputs found

    Correlation among QPO frequencies and Quiescence-state Duration in Black Hole Candidate GRS 1915+105

    Full text link
    We discover a definite correlation between the frequency of the quasi-periodic oscillations (QPO) in quiescence states and the duration of the quiescence state of the transient X-ray source GRS 1915+105. We find that while the QPO frequency can be explained with the oscillation of shocks in accretion flows, the switching of burst to quiescence states (and vice versa) and their duration can be explained by assuming an outflow from the post-shock region. The duration of the quiescence state is inversely related to the QPO-frequency. We derive this relation. We also find the correlation between the observed low (∼0.001−0.01\sim 0.001-0.01Hz) and the intermediate (1-10Hz) QPO frequencies. Our analytical solutions are verified by analyzing several days of public-domain data from RXTE.Comment: Latex, 13 pages with 3 figures; Accepted for Publication in Astrophysical Journal Letter

    Identification of four RXTE Slew Survey sources with nearby luminous active galactic nuclei

    Full text link
    Based on RXTE scans and observations with the SWIFT/XRT telescope and INTEGRAL observatory, we report the identification of four X-ray sources discovered during the RXTE Slew Survey of the |b|>10deg sky with nearby (z ~ 0.017-0.098) luminous (log L_2-10keV ~ 42.7-44 erg/s) active galactic nuclei. Two of the objects exhibit heavily intrinsically absorbed X-ray spectra (NHL~10^23 cm^-2).Comment: 4 pages, 2 figures. Sibmitted to Astronomy and Astrophysics Letter

    Reflection and noise in the low spectral state of GX339-4

    Get PDF
    We analyze RXTE/PCA observations of GX339-4 in the low spectral state from 1996--1997 and show that the pattern of its spectral and temporal variability is nearly identical to that of Cyg X-1. In particular, a tight correlation exists between the QPO centroid frequency and the spectral parameters. An increase of the QPO centroid frequency is accompanied with an increase of the amplitude of the reflected component and a steepening the slope of the underlying power law. Fourier frequency resolved spectral analysis showed, that the variability of the reflected component at frequencies higher than ~1-10 Hz is suppressed in comparison with that of the primary emission.Comment: 4 pages, 4 figures. Accepted in Astronomy and Astrophysics Main Journa

    XMM-Newton discovery of 217 s pulsations in the brightest persistent supersoft X-ray source in M31

    Full text link
    We report on the discovery of a periodic modulation in the bright supersoft X-ray source XMMU J004252.5+411540 detected in the 2000-2004 XMM-Newton observations of M31. The source exhibits X-ray pulsations with a period P~217.7 s and a quasi-sinusoidal pulse shape and pulsed fraction ~7-11%. We did not detect statistically significant changes in the pulsation period on the time scale of 4 years. The X-ray spectra of XMMU J004252.5+411540 are extremely soft and can be approximated with an absorbed blackbody of temperature 62-77 eV and a weak power law tail of photon index ~1.7-3.1 in the 0.2-3.0 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 19 mag suggest that it belongs to M31. The estimated bolometric luminosity of the source varies between ~2e38 and ~8e38 ergs/s at 760 kpc, depending on the choice of spectral model. The X-ray pulsations and supersoft spectrum of XMMU J004252.5+411540 imply that it is almost certainly an accreting white dwarf, steadily burning hydrogen-rich material on its surface. We interpret X-ray pulsations as a signature of the strong magnetic field of the rotating white dwarf. Assuming that the X-ray source is powered by disk accretion, we estimate its surface field strength to be in the range 4e5 G <B_{0}<8e6 G. XMMU J004252.5+411540 is the second supersoft X-ray source in M31 showing coherent pulsations, after the transient supersoft source XMMU J004319.4+411758 with 865.5 s pulsation period.Comment: 11 pages, 4 figures, uses emulateapj style. Submitted to Ap

    XMM-Newton discovery of transient X-ray pulsar in NGC 1313

    Full text link
    We report on the discovery and analysis of the transient X-ray pulsar XMMU J031747.5-663010 detected in the 2004 November 23 XMM-Newton observation of the spiral galaxy NGC 1313. The X-ray source exhibits pulsations with a period P~765.6 s and a nearly sinusoidal pulse shape and pulsed fraction ~38% in the 0.3-7 keV energy range. The X-ray spectrum of XMMU J031747.5-663010 is hard and is well fitted with an absorbed simple power law of photon index ~1.5 in the 0.3-7 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 20 mag allow us to identify XMMU J031747.5-663010 as an accreting X-ray pulsar located in NGC 1313. The estimated absorbed 0.3-7 keV luminosity of the source L~1.6\times 10^{39} ergs/s, makes it one of the brightest X-ray pulsars known. Based on the relatively long pulse period and transient behaviour of the source, we classify it as a Be binary X-ray pulsar candidate. XMMU J031747.5-663010 is the second X-ray pulsar detected outside the Local Group, after transient 18 s pulsating source CXOU J073709.1+653544 discovered in the nearby spiral galaxy NGC 2403.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS. Updated to match the accepted versio

    A Cluster of Galaxies hiding behind M31: XMM-Newton observations of RX J0046.4+4204

    Full text link
    We report on our serendipitous discovery with the XMM-Newton Observatory of a luminous X-ray emitting cluster of galaxies that is located behind the Andromeda galaxy (M31). X-ray emission from the cluster was detected previously by ROSAT, and cataloged as RX J0046.4+4204, but it was not recognized as a galaxy cluster. The much greater sensitivity of our XMM-Newton observations revealed diffuse x-ray emission that extends at least 5 arcmin and has a surface brightness profile that is well fit by the alpha-beta model with beta = 0.70 +/- 0.08, a core radius r_c = 56 arcsec +/- 16, and alpha = 1.54 +/- 0.25. A joint global spectral fit of the EPIC/MOS1, MOS2, and PN observations with Mewe-Kaastra-Liedahl plasma emission model gives a cluster temperature of 5.5 +/- 0.5 keV. The observed spectra also show high significance iron emission lines that yield a measured cluster redshift of z = 0.290 with a 2% accuracy. For a cosmological model with H_0 = 71 km s^{-1} Mpc^{-1}, Omega_M = 0.3 and Omega_{Lambda} = 0.7 we derive a bolometric luminosity of L_x=(8.4 +/- 0.5)*10^{44}$ erg/s. This discovery of a cluster behind M31 demonstrates the utility of x-ray surveys for finding rich clusters of galaxies, even in directions of heavy optical extinction.Comment: ApJ in press, updated to match the accepted versio

    Supersoft X-ray sources in M31: II. ROSAT-detected supersoft sources in the ROSAT, Chandra and XMM eras

    Full text link
    We have performed Chandra observations during the past 3 years of 5 of the M31 supersoft X-ray sources (SSS) discovered with ROSAT. Surprisingly, only one of these sources has been detected, despite a predicted detection of about 20-80 counts. This has motivated a thorough check of the ROSAT M31 survey I data, including a relaxation of the hardness ratio requirement used to select SSS. This increases the number of SSS identified in survey I by 7. We then carried out a comparison with the ROSAT M31 survey II dataset which had hitherto not been explicitly investigated for SSS. We find that most of the ROSAT survey I sources are not detected, and only two new SSS are identified. The low detection rate in the ROSAT survey II and our Chandra observations implies that the variability time scale of SSS is a few months. If the majority of these sources are close-binary SSS with shell hydrogen burning, it further implies that half of these sources predominantly experience large mass transfer rates.Comment: accepted for publ. in ApJ; 2 ps-figures; high-quality figures available at http://www.mpe.mpg.de/~jcg/publis.htm

    On the harmonics of the low-frequency quasi-periodic oscillation in GRS 1915+105

    Full text link
    GRS 1915+105 is a widely studied black hole binary, well known because of its extremely fast and complex variability. Flaring periods of high variability alternate with "stable" phases (the plateaux) when the flux is low, the spectra are hard and the timing properties of the source are similar to those of a number of black hole candidates in hard spectral state. In the plateaux the power density spectra are dominated by a low frequency quasi periodic oscillation (LFQPO) superposed onto a band limited noise continuum and accompanied by at least one harmonic. In this paper we focus on three plateaux, presenting the analysis of the power density spectra and in particular of the LFQPO and its harmonics. While plotting the LFQPO and all the harmonics together on a frequency-width plane, we found the presence of a positive trend of broadening when the frequency increases. This trend can shed light in the nature of the harmonic content of the LFQPO and challenges the usual interpretation of these timing features.Comment: 10 pages, 8 figures. Accepted for publication in MNRA
    • …
    corecore