227 research outputs found
Frost Formation Phenomenon in a Fin-and-Tube Heat Exchanger
A transient two-dimensional mathematical model of frost formation
on a fin-and-tube heat exchanger has been developed and numerically
solved. The mathematical model and numerical procedure have been
experimentally validated. The results have shown that frost layer formation
significantly influences heat transfer between air and a refrigerant. Frost
layer growth is faster with higher inlet air humidity. Using the developed
mathematical model, the algorithm and the computer code, which have
been experimentally validated, it is possible to predict frost layer growth
on fin-and-tube heat exchangers under different operating conditions
Melting of PCM in a thermal energy storage unit: Numerical investigation and effect of nanoparticle enhancement
The present paper describes the analysis of the melting process in a single vertical shell-and-tube latent heat thermal energy storage (LHTES), unit and it is directed at understanding the thermal performance of the system. The study is realized using a computational fluid-dynamic (CFD) model that takes into account of the phase-change phenomenon by means of the enthalpy method. Fluid flow is fully resolved in the liquid phase-change material (PCM) in order to elucidate the role of natural convection. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Temperature profiles are analyzed and compared with experimental data available in the literature. Other relevant quantities are also monitored, including energy stored and heat flux exchanged between PCM and HTF. The results demonstrate that natural convection within PCM and inlet HTF temperature significantly affects the phase-change process. Thermal enhancement through the dispersion of highly conductive nanoparticles in the base PCM is considered in the second part of the paper. Thermal behavior of the LHTES unit charged with nano-enhanced PCM is numerically analyzed and compared with the original system configuration. Due to increase of thermal conductivity, augmented thermal performance is observed: melting time is reduced of 15% when nano-enhanced PCM with particle volume fraction of 4% is adopted. Similar improvements of the heat transfer rate are also detecte
Analiza prijelaza topline unutar grijaće ploče s mnogostrukim izvorima topline
3D numerical study of transient heat transfer phenomenon on a solid plate with
complex heat sources has been carried out. In order to validate the chosen
numerical model, a set of thermographic measurements have been performed on
a heating plate sample. The infrared camera provided a number of thermograms
showing the development of transient temperature fields on the plate surface.
Satisfactory agreement between thermograms and numerically obtained
temperature fields has been achieved. Based upon the validated numerical
model, an approach involving thermographic measurements has been used to
estimate the position of heat sources inside the plate. Numerically obtained
temperature distributions have been used for calculation of effective transient
heating output. The unsteady behavior of the heating plate with complex heat
sources has been numerically studied for different plate materials. It has been
concluded that the temperature fields and transient heating outputs depend on
physical properties of the plate material. However, when a steady state has
been achieved, different plate materials give equivalent steady heating outputs
despite different temperature distributions.Provedena je 3D numerička analiza nestacionarnog prijelaza topline u grijaćoj
ploči s mnogostrukim izvorima topline. Valjanost odabranog numeričkog
modela provjerena je usporedbom s termografskim snimcima koji su načinjeni
na uzorku grijaće ploče. Infracrvena je kamera osigurala dovoljan broj
termograma koji prikazuju nestacionarne temperaturne raspodjele na površini
ploče. Usporedbom termograma i numeričkim putem dobivenih temperaturnih
raspodjela utvrđena je dobra podudarnost termografskih mjerenja i numeričkih
simulacija. Temeljeći se na provjerenom numeričkom modelu, razvijen
je postupak za određivanje položaja izvora topline u grijaćoj ploči pomoću
termografskih mjerenja. Numeričkim putem dobivene temperaturne raspodjele
na površini ploče korištene su za određivanje toplinskog učina grijaće
ploče. Nestacionarno ponašanje temperaturnih raspodjela na grijaćoj ploči s
mnogostrukim izvorima topline ispitivano je numeričkim putem za različite
materijale ploče. Zaključeno je da raspodjele temperatura i nestacionarni
toplinski učini ovise o fizikalnim svojstvima materijala ploče. Međutim, kada
se postigne stacionarno stanje, različiti materijali ploče daju jednake toplinske
učinke usprkos različitim temperaturnim raspodjelama
- …