81 research outputs found

    Study of Ultraviolet-Induces Chromatid and Chromosome Aberrations as a Function of Dose in G1 Phase Vertebrate Tissue Cultures

    Get PDF
    G1 phase A8 Xenopus laevis (toad) and V79B Cricetulus griseus (hamster) tissue cultures were used to observe the frequency of ultraviolet-induced chromosomal aberrations as a function of dose. When cultures are irradiated with ultraviolet light, visible aberrations are virtually absent until a threshold of approximately 80 ergs mm⁻Âč is reached. Aberrations then occur as a nonlinear function of dose. Chromatid aberrations are by far the most prevalent until doses in excess of 200 ergs mm⁻Âč are administered, at which point chromosome aberrations become common

    Spatial patterns in host-associated and free-living bacterial communities across six temperate estuaries

    Get PDF
    A major goal of microbial ecology is to establish the importance of spatial and environmental factors in driving community variation. Their relative importance likely varies across spatial scales, but focus has primarily been on free-living communities within well-connected aquatic environments rather than less connected island-like habitats such as estuaries, and key host-associated communities within these systems. Here we sampled both free-living (seawater and sediment) and host-associated (estuarine fish hindgut microbiome, Pelates sexlineatus) communities across six temperate Australian estuaries spanning ∌500 km. We find that spatial and environmental factors have different influences on these communities, with seawater demonstrating strong distance-decay relationships (R = -0.69) and significant associations with a range of environmental variables. Distance-decay relationships were weak for sediment communities but became stronger over smaller spatial scales (within estuaries, R = -0.5), potentially reflecting environmental filtering across biogeochemical gradients or stochastic processes within estuary sediments. Finally, P. sexlineatus hindgut microbiome communities displayed weak distance-decay relationships (R = -0.36), and limited variation explained by environmental variables, indicating the significance of host-related factors in driving community variation. Our findings provide important ecological insights into the spatial distributions and driving forces of both free-living and host-associated bacterial patterns across temperate estuarine systems

    Blue carbon ecosystem monitoring using remote sensing reveals wetland restoration pathways

    Get PDF
    In an era of climate and biodiversity crises, ecosystem rehabilitation is critical to the ongoing wellbeing of humans and the environment. Coastal ecosystem rehabilitation is particularly important, as these ecosystems sequester large quantities of carbon (known in marine ecosystems as “blue carbon”) thereby mitigating climate change effects while also providing ecosystem services and biodiversity benefits. The recent formal accreditation of blue carbon services is producing a proliferation of rehabilitation projects, which must be monitored and quantified over time and space to assess on-ground outcomes. Consequently, remote sensing techniques such as drone surveys, and machine learning techniques such as image classification, are increasingly being employed to monitor wetlands. However, few projects, if any, have tracked blue carbon restoration across temporal and spatial scales at an accuracy that could be used to adequately map species establishment with low-cost methods. This study presents an open-source, user-friendly workflow, using object-based image classification and a random forest classifier in Google Earth Engine, to accurately classify 4 years of multispectral and photogrammetrically derived digital elevation model drone data at a saltmarsh rehabilitation site on the east coast of Australia (Hunter River estuary, NSW). High classification accuracies were achieved, with >90% accuracy at 0.1 m resolution. At the study site, saltmarsh colonised most suitable areas, increasing by 142% and resulting in 56 tonnes of carbon sequestered, within a 4-year period, providing insight into blue carbon regeneration trajectories. Saltmarsh growth patterns were species-specific, influenced by species’ reproductive and dispersal strategies. Our findings suggested that biotic factors and interactions were important in influencing species’ distributions and succession trajectories. This work can help improve the efficiency and effectiveness of restoration planning and monitoring at coastal wetlands and similar ecosystems worldwide, with the potential to apply this approach to other types of remote sensing imagery and to calculate other rehabilitation co-benefits. Importantly, the method can be used to calculate blue carbon habitat creation following tidal restoration of coastal wetlands

    Innovative Tidal Control Successfully Promotes Saltmarsh Restoration

    Get PDF
    The reduction of saltmarsh habitat at a global scale has seen a concomitant loss of associated ecosystem services. As such, there is a need and a push for habitat rehabilitation. This study examined an innovative saltmarsh restoration project in Australia which sought to address the threats of mangrove encroachment and sea level rise. The project was implemented in 2017, using automated hydraulic control gates, termed“SmartGates,”to lower the tidal regime over one site, effectively reversing sea level rise at a local level. Measured indicators of saltmarsh cover, number of species, seedling counts, and saltmarsh assemblages all showed significant positive development over time, with trends varying based on saltmarsh zone. The saltmarsh, predominantly Sarcocornia quinque flora, developed from remnant supralittoral (previously high) marsh which remained at 45% cover to achieve over 15% coverage across the cleared habitat after 3 years. Slower development in the low marsh (\u3c5%) compared to other zones contrasts with other saltmarsh restoration studies which may be due to the unique nature of the restoration method or the nature of Australian saltmarsh species which favor higher elevations and drier conditions. The development of saltmarsh at the treatment site was found to track toward that at comparison sites over time, becoming similar to some comparison sites by the studies end. This study highlights the usefulness of the novel restoration method used and of the measured indicators for assessing saltmarsh development. This innovative tidal control method could play an important role in the future of saltmarsh restoration worldwide

    Coastal wetlands can be saved from sea level rise by recreating past tidal regimes

    Get PDF
    Climate change driven Sea Level Rise (SLR) is creating a major global environmental crisis in coastal ecosystems, however, limited practical solutions are provided to prevent or mitigate the impacts. Here, we propose a novel eco-engineering solution to protect highly valued vegetated intertidal ecosystems. The new ‘Tidal Replicate Method’ involves the creation of a synthetic tidal regime that mimics the desired hydroperiod for intertidal wetlands. This synthetic tidal regime can then be applied via automated tidal control systems, “SmartGates”, at suitable locations. As a proof of concept study, this method was applied at an intertidal wetland with the aim of restabilising saltmarsh vegetation at a location representative of SLR. Results from aerial drone surveys and on-ground vegetation sampling indicated that the Tidal Replicate Method effectively established saltmarsh onsite over a 3-year period of post-restoration, showing the method is able to protect endangered intertidal ecosystems from submersion. If applied globally, this method can protect high value coastal wetlands with similar environmental settings, including over 1,184,000 ha of Ramsar coastal wetlands. This equates to a saving of US$230 billion in ecosystem services per year. This solution can play an important role in the global effort to conserve coastal wetlands under accelerating SLR

    Elevated estuary water temperature drives fish gut dysbiosis and increased loads of pathogenic vibrionaceae

    Get PDF
    Marine water temperatures are increasing globally, with eastern Australian estuaries warming faster than predicted. There is growing evidence that this rapid warming of coastal waters is increasing the abundance and virulence of pathogenic members of the Vibrionaceae, posing a significant health risk to both humans and aquatic organisms. Fish disease, notably outbreaks of emerging pathogens in response to environmental perturbations such as heatwaves, have been recognised in aquaculture settings. Considerably less is known about how rising sea surface temperatures will impact the microbiology of wild fish populations, particularly those within estuarine systems that are more vulnerable to warming. We used a combination of Vibrio-specific quantitative PCR and amplicon sequencing of the 16S rRNA and hsp60 genes to examine seawater and fish (Pelates sexlineatus) gut microbial communities across a quasi-natural experimental system, where thermal pollution from coal-fired power stations creates a temperature gradient of up to 6 °C, compatible with future predicted temperature increases. At the warmest site, fish hindgut microbial communities were in a state of dysbiosis characterised by shifts in beta diversity and a proliferation (71.5% relative abundance) of the potential fish pathogen Photobacterium damselae subsp. damselae. Comparable patterns were not identified in the surrounding seawater, indicating opportunistic proliferation within estuarine fish guts under thermal stress. A subsequent evaluation of predicted future warming-related risk due to pathogenic Vibrionaceae in temperate estuarine fish demonstrated that warming is likely to drive opportunistic pathogen increases in the upper latitudinal range of this estuarine fish, potentially impacting adaptations to future warming. These findings represent a breakthrough in our understanding of the dynamics of emerging pathogens in populations of wild aquatic organisms within environments likely to experience rapid warming under future climate change

    Factors influencing Manx Shearwater grounding on the west coast of Scotland

    Get PDF
    Grounding of thousands of newly fledged petrels and shearwaters (family Procellariidae) in built‐up areas due to artificial light is a global problem. Due to their anatomy these grounded birds find it difficult to take off from built‐up areas and many fall victim to predation, cars, dehydration or starvation. This research investigated a combination of several factors that may influence the number of Manx Shearwater Puffinus puffinus groundings in a coastal village of Scotland located close to a nesting site for this species. A model was developed that used meteorological variables and moon cycle to predict the daily quantity of birds that were recovered on the ground. The model, explaining 46.32% of the variance of the data, revealed how new moon and strong onshore winds influence grounding. To a lesser extent, visibility conditions can also have an effect on grounding probabilities. The analysis presented in this study can improve rescue campaigns of not only Manx Shearwaters but also other species attracted to the light pollution by predicting conditions leading to an increase in the number of groundings. It could also inform local authorities when artificial light intensity needs to be reduced

    Legacy metal contamination is reflected in the fish gut microbiome in an urbanised estuary

    Get PDF
    Estuaries are critical habitats subject to a range of stressors requiring effective management. Microbes are gaining recognition as effective environmental indicators, however, the response of host associated communities to stressors remains poorly understood. We examined microbial communities from seawater, sediments and the estuarine fish Pelates sexlineatus, in Australia\u27s largest urbanised estuary, and hypothesised that anthropogenic contamination would be reflected in the microbiology of these sample types. The human faecal markers Lachno3 and HF183 were not detected, indicating negligible influence of sewage, but a gradient in copy numbers of the class 1 integron (intI-1), which is often used as a marker for anthropogenic contamination, was observed in sediments and positively correlated with metal concentrations. While seawater communities were not strongly driven by metal contamination, shifts in the diversity and composition of the fish gut microbiome were observed, with statistical links to levels of metal contamination (F2, 21 = 1.536, p \u3c 0.01). Within the fish gut microbiome, we further report increased relative abundance of amplicon sequence variants (ASVs; single inferred DNA sequences obtained in sequencing) identified as metal resistant and potentially pathogenic genera, as well as those that may have roles in inflammation. These results demonstrate that microbial communities from distinct habitats within estuarine systems have unique response to stressors, and alterations of the fish gut microbiome may have implications for the adaptation of estuarine fish to legacy metal contamination

    Genetic differentiation in the threatened soft coral Dendronephthya australis in temperate eastern Australia

    Get PDF
    The endangered soft coral Dendronephthya australis faces substantial population decreases in central eastern Australian waters. Despite uncertainty about the cause of these declines, the population genetics of the species has not been investigated. Genetic analysis suggests that D. australis is a single species within the family Nephtheidae, confirming identifications based on morphological characteristics only. Soft coral colonies were distributed from Seahorse Gardens in Port Stephens to Jervis Bay in temperate Australian waters, a distance of some 400 km. Genetic differentiation was observed along this distribution using SNP genotyping. Relatively high levels of genetic differentiation were observed between Jervis Bay and the other sites, indicating limited gene flow between this location and others. Moreover, the genetic distinctiveness, low diversity and heterozygote excess at this southern location suggested that it was subjected to a recent population decline and genetic bottleneck. Colonies at Seahorse Gardens and Ettalong, approximately 150 km south of Seahorse Gardens, displayed greater genetic diversity, making these sites more likely to host ancestral populations and to have acted as refugia. Recent substantial decreases in population sizes at these locations are particularly concerning, and these locations require immediate conservation attention
    • 

    corecore