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Abstract

A major goal of microbial ecology is to establish the importance of spatial and environmental factors in driving community vari-
ation. Their relative importance likely varies across spatial scales, but focus has primarily been on free-living communities within
well-connected aquatic environments rather than less connected island-like habitats such as estuaries, and key host-associated com-
munities within these systems. Here we sampled both free-living (seawater and sediment) and host-associated (estuarine fish hindgut
microbiome, Pelates sexlineatus) communities across six temperate Australian estuaries spanning ~500 km. We find that spatial and
environmental factors have different influences on these communities, with seawater demonstrating strong distance-decay rela-
tionships (R = —0.69) and significant associations with a range of environmental variables. Distance-decay relationships were weak
for sediment communities but became stronger over smaller spatial scales (within estuaries, R = —0.5), potentially reflecting envi-
ronmental filtering across biogeochemical gradients or stochastic processes within estuary sediments. Finally, P. sexlineatus hindgut
microbiome communities displayed weak distance-decay relationships (R = —0.36), and limited variation explained by environmental
variables, indicating the significance of host-related factors in driving community variation. Our findings provide important ecological
insights into the spatial distributions and driving forces of both free-living and host-associated bacterial patterns across temperate

estuarine systems.

Keywords: bacterial communities, estuary, free-living, host-associated, microbiome

Introduction

Microorganisms play crucial roles in global biogeochemical cy-
cles, particularly critical to the functioning of dynamic environ-
ments such as estuaries (Hanson et al. 2012, Zhang et al. 2022). A
key focus of marine microbial ecology is the study of spatial pat-
terns and related environmental factors in order to understand
the mechanisms responsible for the generation and maintenance
of diversity (Van der Guchtet al. 2007, Hanson et al. 2012). The con-
tributions of spatial factors and local environmental conditions
are considered to be major competitive forces in driving micro-
bial biogeography; however, these are thought to be largely scale-
dependent: on a global scale, spatial separation tends to over-
whelm local environmental effects; at small scales, environmen-
tal effects are the major determinants; and at intermediate scales,
both local environmental conditions and spatial factors are im-
portant drivers of community variation (Martiny et al. 2006, 2011).

The Baas-Becking hypothesis “everythingis everywhere, but the
environment selects” (Baas-Becking 1934) implies that all microor-
ganisms are globally distributed, with local environmental con-
ditions driving selection of distinctive assemblages (De Wit and
Bouvier 2006). This early hypothesis has been heavily debated by
numerous studies, which have demonstrated geographic separa-
tion independent of changes in the environment, indicating dis-
persal limitation (Langenheder and Ragnarsson 2007). One of the
most commonly studied biogeographic patterns is the distance-
decay relationship, which refers to decreasing community similar-

ity with increasing geographic distance (Hanson et al. 2012, Zhang
et al. 2022). Similar to patterns observed for macroorganisms,
distance-decay relationships are thought to be stronger in hetero-
geneous habitats and for island-like habitats compared to contin-
uous environments (Prosser et al. 2007, Zinger et al. 2014); how-
ever, patterns are influenced by both deterministic and stochastic
processes (Wang et al. 2013), highlighting the importance of iden-
tifying major assembly processes governing community diversity.

In order to increase our understanding of the contributions of
spatial and local environmental effects on microbial communi-
ties, it is also crucial to consider different bacterial habitats (e.g.
free-living vs host-associated) (Taylor et al. 2005). While distri-
butions of free-living microorganisms may be strongly driven by
dispersal limitation and environmental filtering (Fuhrman et al.
2008, Wietz et al. 2010, Liu et al. 2018, Zhang et al. 2022), host
organisms provide unique environmental conditions that differ
from those in the surrounding seawater or sediments and may
therefore function as island habitats, allowing for allopatric spe-
clation of symbiotic microbes living in physically separated hosts,
resulting in distinct host-associated communities and contribut-
ing to distance-decay patterns (Papke and Ward , Taylor et al.
2005). Dispersal of host-associated communities is therefore likely
dependent on the movement or migration of the host, with these
communities comparatively more buffered from the effects of en-
vironmental conditions (Dickey et al. 2021). Despite this, the bio-
geography of host genotypes and local environmental-genotype
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interactions have been documented, along with environmental fil-
tering through diet in shaping associated microbiomes (Spor et al.
2011, Wagner et al. 2016, Loo et al. 2019, Baltrus 2020, Baldassarre
et al. 2022). Evidence indicates that both host-related and envi-
ronmental factors drive variation in microbial communities asso-
ciated with key marine hosts such as sponges and corals (Taylor
et al. 2005, Luter et al. 2015, Rubio-Portillo et al. 2018, Easson et al.
2020); however, knowledge of the relative importance of these re-
mains limited, especially in important estuarine host organisms
such as fish.

Within coastal systems, fish have great ecological, economic,
and cultural significance (Schlacher et al. 2005), representing
an important study organism for addressing questions for host-
microbe associations and microbial diversity. Despite their sig-
nificance and the recognition that fish gut microbiome interac-
tions are important for host fitness, metabolism, and immunity,
host-microbiome interactions in fish are understudied in compar-
ison to other vertebrates (Ghanbari et al. 2015, Colston and Jack-
son 2016). Fish are constantly exposed to the surrounding seawa-
ter and sediments via dietary uptake; however, there is evidence
that gut microbial communities are distinct from those in the sur-
rounding environment (Navarrete et al. 2012, Li et al. 2015), sug-
gesting water-borne dispersal between hosts may be negligible.
While such spatial patterns have been established in free-living
microbial communities (Zinger et al. 2014, Wang et al. 2015, Liu
et al. 2018, Zhang et al. 2022), investigations into these patterns
have been largely overlooked for hosts occupying dynamic and
complex estuarine systems such as fish.

Both environmental and spatial variability are important
drivers of microbial variation in continuous aquatic environ-
ments, but these patterns are less clear in less connected, island-
like habitats (Hanson et al. 2012), such as estuaries. Estuaries rep-
resent unique hotspots of biogeochemical cycles with high micro-
bial biodiversity supported along biogeochemical gradients (Web-
ster et al. 2015, Liu et al. 2018, Zhang et al. 2022). Here, we sam-
pled both free-living and host-associated microbial communities
across an intermediate scale of ~500 km, spanning six east Aus-
tralian estuaries, and aimed to address the following questions:
what influence do spatial and environmental factors have on mi-
crobial communities, and does this differ for free-living vs host-
associated communities? We hypothesized that: (a) distance-
decay relationships would be stronger for free-living than host-
associated communities due to limited movement of environmen-
tal bacteria between estuaries; (b) at the intermediate scale sam-
pled in this study, spatial effects and local environmental vari-
ation would both contribute to spatial patterns across estuaries;
and (c) free-living communities would be more strongly shaped by
local environmental variation than host-associated communities
due to their closer association with the environment.

Methods
Field

This research was conducted under the University of Newcastle
Animal Ethics Protocol A-2020-026. Six estuaries along the NSW
coastline were selected for sampling, based on available seagrass
habitat and distribution of the estuarine fish Pelates sexlineatus
(eastern striped grunter): Hastings River, Wallis Lake, Lake Mac-
quarie, Brisbane Water, Lake Illawarra, and Burrill Lake (Fig. 1).
Pelates sexlineatus is a common estuarine fish selected for its broad
distribution in seagrass meadows along the south-east coast of
New South Wales (Pollard 1984, Trnski and Neira 1998, Smith and

Suthers 2000). Seawater, sediments, and P. sexlineatus individuals
were collected from three sites within each estuary between Octo-
ber and November 2020. The following water quality parameters
were measured at each site using a Horiba U-50 water quality me-
ter: temperature (precision of 0.01°C), salinity (0.1 ppt), pH (0.01),
turbidity (0.1 NTU), and dissolved oxygen (0.01 mg/L). Seawater
was collected in sterile bottles (rinsed with 10% bleach solution)
for amplicon sequencing (n = 5), with ~800 ml from each sam-
ple filtered onto 0.2 um pore-sized Sterivex filters, depending on
the amount of particulate organic matter present. Sediment sam-
ples (50-60 ml) were collected using a 50 ml Luer Lock syringe
plunged vertically into the sediment to ~100 mm depth, for sedi-
ment granulometry and the determination of organic matter. Sur-
face sediments were also collected for amplicon sequencing (n =
5) by scraping the upper 1 cm layer into sterile 15 ml tubes. Pelates
sexlineatus were collected using a 10-m seine net pulled through
seagrass beds for amplicon sequencing of the hindgut microbiome
(n=75). All samples were immediately stored on ice and processed
within 6 h of collection.

DNA extraction and 16S rRNA gene sequencing

Pelates sexlineatus total length (mm) and weight (g) were recorded,
and fish hindgut contents removed (~0.25 g). A 0.25 g sample
from collected sediments were stored at —80°C until DNA ex-
traction. Qiagen DNeasy PowerSoil Kits were used to extract DNA
from fish and sediment samples, and Qiagen DNeasy PowerWater
Kits were used for seawater samples. Extraction blanks contain-
ing no sample were processed with each batch to serve as con-
trols. Sample quantity and quality were checked using a NanoPho-
tometer NP80. Bacterial communities were characterized using
16S rDNA gene amplicon sequencing. The V1-V3 region of the
16S rDNA gene from prokaryotes was amplified using universal
primers 27F (AGAGTTTGATCMTGGCTCAG) and 519R (GWATTAC-
CGCGGCKGCTG) attached with Illumina adaptors in PCR with the
following cycling conditions: 95°C for 10 min, then 35 cycles of:
94°C for 30 s, 55°C for 10 s, and 72°C for 45 s, with a final exten-
sion of 72°C for 10 min. PCR products were sequenced using the
Mllumina Miseq v3 (2 x 300 bp) platform at the Ramaciotti Cen-
tre for Genomics at the University of New South Wales. Resultant
amplicons were processed using the R pipeline DADA2 with de-
fault parameters (Callahan et al. 2016), including the removal of
potential chimeras. Reads were clustered to produce amplicon se-
quence variants (ASVs) and aligned to the SILVA v132 database
(Yilmaz et al. 2014) for taxonomic assignment. The dataset was
further cleaned by removing singletons and those identified as
non-bacterial or originating from chloroplasts. Of the 90 samples
that were collected for each sample type, 65 fish hindgut sam-
ples were successfully sequenced, as well as 75 sediment samples,
and 50 seawater samples (Supplementary Table S1). Cleaned data
were rarefied to 4276 reads per sample (see Supplementary Fig-
ure S1 for rarefaction curves on raw and rarefied data, and Sup-
plementary Table S1 for a summary of samples sequenced and
retained after rarefaction). Samples with reads below this thresh-
old (seven fish hindgut samples and two seawater samples) were
removed in order to retain diversity after rarefaction.

Statistical analysis

Statistical analysis was carried out in RStudio using the “vegan”
package (R Core Team 2018, Oksanen et al. 2019). Microbial com-
munity data was analyzed using the “phyloseq” package (McMur-
die and Holmes 2013), with each sample type (seawater, sediment,
and fish hindgut) analyzed separately. Diversity metrics were cal-
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Figure 1. Map of six east Australian estuaries sampled and sampling locations within each estuary: (A) Hastings River, (B) Wallis Lake, (C) Lake

Macquarie, (D) Brisbane Water, (E) Lake Illawarra, and (F) Burrill Lake.

culated using rarefied sequence data. Linear regression models
were employed to test correlations between bacterial community
similarity (Bray-Curtis similarity) and geographic distance (km?)
and environmental variables (Euclidean distances), and distance-
decay slopes were visualized using scatterplots. PERMANOVA with
pairwise comparisons was used to investigate significant differ-
ences in community composition (based on Bray-Curtis dissim-
ilarity) between estuaries, and PERMDISP was further employed
to investigate differences in community variance across estuar-
ies using the “betadisper” function (Oksanen et al. 2019). ANOVA
with Tukey’s HSD was employed to assess significant differences
in alpha diversity (observed richness and Shannon diversity).
The following environmental variables were extracted from the
NSW Estuary Health Monitoring, Evaluating, and Reporting (MER)
program on the SEED NSW database ([dataset]x Department of
Planning and Environment 2020) for each of the sampled estu-
aries: average depth (m), flushing time (days), catchment area
(km?), catchment cleared (%), urbanization (%), estuary surface
area (km?), and estuary volume (ML). NSW estuarine macrophyte
data was obtained from the Fisheries NSW Spatial Data Portal
([dataset]* NSW Department of Primary Industries), and seagrass,
mangrove, and saltmarsh area (km?) for each estuary was calcu-
lated in QGIS 3 (QGIS.org 2022 et al. 2022) using the GroupStats
plugin (HenrikSpa 2021). Environmental variables used in the
study are presented in Supplementary Table S2 and were shown
to change significantly over the sampling area (with geographic

distance) (see Supplementary Table S3). Environmental variables
were checked for collinearity, and those that were highly corre-
lated with other variables (R > 0.8) were removed from further
statistical analyses. Mantel and partial mantel tests were used to
test the correlation between environmental variability and geo-
graphic distance on variation of bacterial alpha diversity between
sites (Euclidean distances). Redundancy analysis (RDA) was used
tomodel the effect of environmental variables on entire microbial
communities, with forward selection used to select statistically
significant variables. Significance of RDA models and explanatory
variables were determined using ANOVAs. Finally, Spearman rank
correlations were employed to test associations between environ-
mental parameters on dominant phyla (>1% relative abundance)
and ASVs (50 most abundant), with significant correlations visu-
alized using correlation heatmaps.

Results

After merging, quality filtering, denoising, and removal of
chimeric and non-bacterial sequences, a total of 2 435 013 (mean
50729.44 + 3303.69) sequences from 48 samples spanning five es-
tuaries were obtained for seawater, 1712 831 (22 537.25 £ 1004.20)
sequences from 75 samples spanning six estuaries were obtained
for sediments, and 880 706 (13 761.03 & 1259.76) sequences from
65 samples spanning six estuaries were obtained for fish hindgut
samples.
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Distance-decay patterns

Across estuaries, bacterial communities from seawater displayed
the strongest distance-decay relationship, with Bray—Curtis simi-
larity decreasing with increasing geographic distance (R = —0.69,
P < 0.01; Fig. 2A). Comparatively weaker relationships were ob-
served for sediment (R = —0.32, P < 0.01; Fig. 2C) and fish commu-
nities (R = —0.39, P < 0.01; Fig. 2E). Bacterial communities associ-
ated with the seawater and sediments exhibited stronger associa-
tions between community similarity and geographic distance over
smaller spatial scales (within estuaries), and this was strongest for
seawater communities (R = —0.71, P < 0.01; Fig. 2B), followed by
sediments (R = —0.5, P < 0.01; Fig. 2D). Conversely, the distance-
decay relationship for fish hindgut samples was slightly weaker
within estuaries compared to across estuaries (R = —0.37, P <
0.01; Fig. 2F). Multiple linear regressions revealed significant as-
sociations between seawater community similarity and both ge-
ographic distance and environmental variation, as well as a sig-
nificant interaction between distance and environment across (P
< 0.01) and within estuaries (P < 0.01; Supplementary Table S4).
Sediment bacterial communities had significant associations with
geographic distance both across and within estuaries; however,
environmental variables were only significant at a larger spatial
scale (P < 0.01; Supplementary Table S4). There was, however,
significant interactions between environmental variables and ge-
ographic distance at both spatial scales. At both spatial scales,
fish hindgut bacterial similarity had a weak association with ge-
ographic distance (P < 0.01), but not environmental variables (P
> 0.05); however, there were significant interactions between ge-
ographic distance and environmental variables (Supplementary
Table S4).

Bacterial community diversity

Community variance between estuaries was not equal for bacte-
rial communities associated with P. sexlineatus hosts (PERMDISP;
Fs 57 = 4.846, P = 0.001), seawater (F4 47 = 19.844, P = 0.001), or
sediments (Fs ;5 = 5.7206, P = 0.001). Despite this, the results
from the PERMANOVA tests and the nMDS plots indicate that
for all sample types, bacterial community composition demon-
strated significant separation by estuary (P < 0.001; Supplemen-
tary Table S5), with distinct communities found in each estuary
for all sample types (P < 0.01; Supplementary Table S6) (Fig. 3A,
C, and D). Similarly, alpha diversity (observed richness and Shan-
non’s diversity) differed significantly between estuaries for each
sample type (ANOVA, P < 0.01; Supplementary Table S7) (Fig. 3B,
D, and F). Seawater communities demonstrated an overall trend
of decreasing alpha diversity with decreasing latitude (Figure 3B;
Supplementary Table S8). Significant relationships were identified
between seawater bacterial alpha diversity and geographic dis-
tance (Mantel test, R = 0.489, P < 0.001), but not environmental
factors (R = —0.029, P = 0.639). Spearman rank correlations were
employed to investigate associations between individual environ-
mental variables and seawater bacterial alpha diversity measures,
with pH, sediment silt, latitude, average estuary depth, flushing
time, catchment area, area of saltmarsh and mangrove in the es-
tuary, and estuary surface area most strongly associated with al-
pha diversity measures (Supplementary Table S9).

For sediments, observed richness and Shannon diversity were
variable across estuaries (Figure 3D; Supplementary Table S8).
While significant relationships were not identified between sedi-
ment bacterial alpha diversity and geographic distance (R = 0.002,
P = 0.442) or environmental variables (R = 0.077, P = 0.085), Spear-
man rank correlations identified significant associations between

sediment bacterial alpha diversity measures and particular en-
vironmental variables, specifically salinity, pH, sediment organic
matter, estuary volume, catchment size, urbanization percentage,
and area of seagrass and mangroves (Supplementary Table S9).

For fish hindguts, bacterial alpha diversity generally increased
with decreasing latitude (Figure 3F; Supplementary Table S8). Sig-
nificant relationships were identified between fish hindgut bacte-
rial alpha diversity and geographic distance (R = 0.103, P = 0.01),
but not environmental variables (R = 0.038, P = 0.280). Significant
associations between individual environmental variables and fish
hindgut bacterial alpha diversity were identified, particularly sed-
iment silt percentage, latitude, estuary flushing time, catchment
area, urbanization percentage, and area of mangroves (Supple-
mentary Table S9).

Relationships with environmental variables

Several environmental variables were identified as significant
drivers of variation in seawater and sediment microbial commu-
nity composition (Figure 4; Supplementary Tables S10 and S11).

Both water column and sediment parameters, along with es-
tuary catchment parameters, were important for free-living com-
munities, explaining 50.72% of total seawater community varia-
tion (Fig. 4A) and 20.39% of total sediment community variation
(Figure 4B; Supplementary Table S11). This included temperature,
salinity, pH, silt, estuary depth, flushing time, and percentage of
the catchmenti.e. cleared and urbanized (Fig. 4B; Supplementary
Table S11). In comparison to seawater and sediment communi-
ties, fewer environmental variables were identified as significant
drivers of variation in P. sexlineatus hindgut microbial communi-
ties, with water column pH, catchment area, percentage of urban-
ization in the estuary catchment, and estuary volume identified
as driving 21.66% of the community variation (Figure 4C; Supple-
mentary Table S11).

Seawater samples were composed of Proteobacteria (47.33% =+
2.14 relative abundance), Bacteroidota (21.97% =+ 1.35), Cyanobac-
teria (16.76% =+ 2.20), Actinobacteria (11.80% =+ 0.84), Verrucomi-
crobiota (0.56% =+ 0.08), Planctomycetota (0.37% =+ 0.05), Chlo-
roflexota (0.15% =+ 0.04), and the SAR324 clade (0.15% =+ 0.04)
(Fig. 5A). Dominant seawater bacterial phyla showed the strongest
correlations with environmental variables in comparison to those
from sediment and fish hindgut communities (Fig. 5). Actinobac-
teria was negatively correlated with salinity, latitude, and catch-
ment area, but positively correlated with sediment silt percentage
(Fig. 5A). Proteobacteria was negatively correlated with sediment
organic matter, cyanobacteria was positively correlated with pH,
and SAR324 was positively correlated with temperature, urban-
ization (%), estuary volume (ML), and seagrass area (km?) (Fig. SA).
Among the most abundant ASVs within seawater samples, mem-
bers of the Cyanobacteria and Bacteroidota phylum had strong
correlations with a number of environmental variables (Supple-
mentary Figure S2). Specifically, within the Cyanobacteria phyla,
ASVs identified in the genera Cyanobium PCC-6307 and Synechococ-
cus CC902 typically had significant positive correlations with pH,
sediment organic matter and silt content, average estuary depth,
and flushing time, and negative correlations with latitude (Sup-
plementary Figure S2).

Sediment samples were dominated by Proteobacteria (43.95%
+ 0.58), Actinobacteria (18.70% =+ 0.87), Bacteroidota (11.36% =+
0.87), Desulfobacterota (6.53% =+ 0.32), Chloroflexota (4.80% =+
0.27), Planctomycetota (3.66% =+ 0.24), Cyanobacteria (2.76% =+
0.48), Acidobacteriota (2.48% =+ 0.15), and Myxococcota (2.49% =+
0.14) (Fig. 5B). Some of the dominant phyla from sediment sam-
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ples showed strong negative correlations with salinity (Acidobac-
teriota, Actinobacteria, Chloroflexota, NB1.j, and Planctomyce-
tota) and latitude (Chloroflexota and Desulfobacterota) (Fig. 5B).
Bacteroidota was significantly positively correlated with salinity,
and some phyla had significant correlations with sediment or-
ganic matter, sediment silt (%), and latitude (Fig. 5B). Of the most
abundant ASVs recorded in sediment samples, those belonging
to the Proteobacteria (genera Woeseia and Methyloceanibacter) and
Actinobacteria phyla (family Propionibacteriaceae and order Acti-
nomarinales) had the strongest associations with environmental
variables, particularly negative relationships with water column
salinity, latitude, and estuary catchment area (Supplementary Fig-
ure S2).

Fish hindgut samples were dominated by Proteobacteria
(59.28% + 2.74), Actinobacteria (20.12% =+ 1.82), Cyanobacteria
(9.24% + 1.72), Chloroflexota (5.95% =+ 0.52), Firmicutes (2.37%
+ 0.57), Planctomycetota (1.43% =+ 0.15), Desulfobacterota (0.97%
+ 0.25), Campylobacterota (0.27% =+ 0.19), Bacteroidota (0.14% +
0.06), and Acidobacteriota (0.12% + 0.03) (Fig. 5C). Dominant phyla
from fish hindgut samples showed strong negative associations
with latitude and estuary catchment area as well as positive cor-
relations with water column pH, sediment silt, and average estu-
ary depth (Fig. 5C). Dominant ASVs associated with the fish gut
microbiome had weaker associations with environmental vari-
ables than seawater or sediment samples (Supplementary Figure
S2). Within the Proteobacteria phylum, ASVs identified as Methy-
loceanibacter, Rhodobaculum, and Rickettsiales had significant asso-
clations with pH and salinity, while some ASVs identified as Syne-
chococcus CC902 and Cyanobium PCC-6307 (within the Cyanobacte-
ria phylum) had negative associations with latitude (Supplemen-
tary Figure S2).

Discussion

Unveiling the relative importance of spatial and environmental
factors in the biogeographic distribution and assembly of micro-
bial communities is a central issue in microbial ecology (Chen et
al. 2017, Mo et al. 2018). Studies have focused primarily on free-
living communities, but the importance of biogeographic theo-
ries for key estuarine host-associated communities are less clear.
Here, we demonstrate that while estuarine bacterial communi-
ties associated with seawater, sediments, and the hindgut micro-
biome of a common estuarine fish are shaped across geographic
distance, their distributions are shaped by different factors. At the
intermediate scale studied here (~500 km), estuary seawater com-
munities are strongly shaped by both geographic distance and
environmental and catchment variables. Despite similarly weak
distance-decay relationships for communities associated with the
sediments and fish hindguts, sediment communities were influ-
enced by environmental parameters and characterized by greater
species richness, potentially reflecting adaptation to steep bio-
geochemical, and environmental gradients within estuary sedi-
ments. On the other hand, the measured environmental variables
had minimal influence on overall composition of the fish hindgut
microbiome, indicating the importance of host-related factors in
maintaining structure of the gut microbiome.

Geographical distance influences free-living
community dissimilarity

Distance-decay relationships for free-living communities are ex-
pected to be weak in open ocean systems due to physical mixing
resulting in higher dispersal potential and habitat homogeneity

(Zinger et al. 2014, Wang et al. 2020). However, coastal environ-
ments experience much larger changes in environmental varia-
tion than open ocean environments (Zinger et al. 2014), and es-
tuaries act as habitat islands with limited mixing between sys-
tems and strong dispersal limitation for bacterial communities
across multiple systems (Clark et al. 2021). Here, we demonstrate
strong distance-decay relationships for seawater bacterial com-
munities at both intermediate and small spatial scales (i.e. across
and within estuaries). At small spatial scales, these patterns may
reflect the influence of the increased environmental heterogene-
ity of coastal environments on bacterial community variation.

The environmental heterogeneity within estuaries is poten-
tially driven by tidal and freshwater exchanges, and therefore wa-
ter quality variables may be less variable for sediments than sea-
water. Nevertheless, sediment bacterial communities are likely to
be influenced by limited dispersal potential (sessile lifestyles re-
sulting in spatial isolation) and steep biogeochemical gradients
within coastal sediments, potentially resulting in strong habi-
tat heterogeneity (Zinger et al. 2014). The sediment communi-
ties sampled here displayed weak distance-decay relationships
across estuaries, although this relationship became stronger over
smaller spatial scales (within estuaries). There are three main
processes that could influence these patterns: First, some mi-
croorganisms may be dispersal-limited within sediments, which
can lead to a decrease in community similarity, as confirmed by
a weak but significant decline trend of similarity between sites
with increasing geographic distance at both spatial scales (Mar-
tiny et al. 2011, Albright and Martiny 2018). Dispersal limitation
may also allow for ecological drift of bacterial community com-
position through stochastic births and deaths and limited dis-
persal potential, increasing patchiness and partially explaining
the stronger distance-decay relationship at a smaller spatial scale
(Tuomisto et al. 2003, Martiny et al. 2011). Relic DNA (extracellular
DNA from dead microorganisms that may persist in sediments)
can also affect community composition and richness, and given
that relic DNA is not subject to environmental selection, may re-
duce distance-decay relationships (Lennon et al. 2018, Clark et al.
2021). Finally, species sorting (adaptation to local environments)
may also lead to a decrease in community similarity, as evidenced
by significant associations with environmental variables at larger
spatial scales (i.e. across estuaries) (Hanson et al. 2012). Environ-
mental selection has been identified as a major process leading
to distance-decay relationships and may explain some of the pat-
terns observed here (Hanson et al. 2012).

Another pattern ie. commonly observed in macroorganisms
but still debated in microorganisms is the decline in species rich-
ness with increasing latitude (Hillebrand et al. 2004). This trend
is stronger across regional scales in comparison to local scales,
and increases with organism size and trophic level (Hillebrand et
al. 2004). While seawater bacterial communities showed this pre-
dicted pattern of higher diversity at lower latitudes, fish hindgut
communities demonstrated a weak trend in the opposite direc-
tion, and no patterns were detected in sediment communities.
The lack of consistent relationships between species richness
and latitude here may be a reflection of the relatively small spa-
tial area studied in comparison to previous work that considers
much larger latitudinal and environmental gradients (i.e. cap-
turing both temperate and tropical environments) (Hillebrand et
al. 2004, Fuhrman et al. 2008). We also note that species rich-
ness differed between sample types, lowest in fish hindgut micro-
biome samples, and greatest in sediments. This may be a reflec-
tion of the specialized role of the gut microbiota (Roeselers et al.
2011) and the vast biogeochemical cycles occurring in sediments
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(Hicks et al. 2018). Higher species richness in sediments may be at-
tributed to steep biogeochemical gradients, higher nutrient con-
centrations, and higher habitat heterogeneity (Zhao et al. 2020).
This increased species richness may also reflect the ability of sed-
iment bacteria to respond to changes in environmental condi-
tions, making this environment more resistant to environmental
change (Kerfahi etal. 2014), and supporting the idea that sediment
communities studied here are more strongly driven by environ-
mental selection than dispersal limitation. It is important to note
that while the Shannon diversity index provides more inferences
about community composition and is more robust than simple
species richness or evenness by also taking relative abundances
of different species into consideration (Kim et al. 2017, Roswell
et al. 2021), total microbial diversity was not circumscribed, and
thus diversity estimates may not capture all members of the
community.

Environmental factors drive variation in
free-living communities

Temperature, salinity, and nutrients have been identified as signif-
icant drivers of variation in free-living aquatic microbial commu-
nities (Fuhrman et al. 2008, Wietz et al. 2010, Liu et al. 2018, Zhang
et al. 2022). At the intermediate scale studied here (~500 km),
we provide evidence that water quality and estuary catchment
parameters are important drivers for estuary seawater bacterial
communities. Specifically, water column pH and salinity, as well as
average depth, flushing time, and percentage of the catchmenti.e.
cleared, were significant drivers for seawater bacterial community
composition and diversity. Genera within the Cyanobacteria, in
particular ASVs identified as Synechococcus CC9902 and Cyanobium
PCC-6307, were associated with increased pH, decreased salinity,
and smaller catchment areas with decreased saltmarsh and man-
grove areas. These genera are important primary producers in
open ocean environments and have been frequently associated
with blooms in coastal areas, particularly after storms or large
freshwater inputs (Xia et al. 2015, Li et al. 2019). They have also
been associated with other abundant taxa reported here, includ-
ing Candidatus Actinomarina, HIMB11, Winogradskyella, and NS5 ma-
rine group, which were also found associated with similar envi-
ronmental variables (Li et al. 2019, Fortin et al. 2022).

For sediment communities, significant associations between
community similarity and environmental variables were only
documented at larger spatial scales, indicating that these com-
munities may be less strongly influenced by dispersal than en-
vironmental filtering across larger spatial scales. Here, salinity
was most frequently associated with sediment microbial com-
munity diversity and composition, consistent with findings from
other systems (Webster et al. 2015, Vekeman et al. 2016, Huang
et al. 2019, Yue et al. 2022). The most abundant ASVs belong-
ing to taxa within the Proteobacteria (Methyloceanibacter and Woe-
seia) and Actinobacteria (Propionibacteriaceae and Actinomari-
nales) were significantly correlated with salinity and are abun-
dant in estuarine sediments, likely carrying out diverse ecologi-
cal functions including denitrification, sulfur oxidation, and aer-
obic ammonium oxidation (Vekeman et al. 2016, Mufmann et al.
2017, Rios-Del Toro et al. 2018, Zhang et al. 2020). Previous find-
ings also indicate, however, that there is a large amount of unex-
plained variation in these communities, consistent with findings
here. These studies suggest that this is a result of either unmea-
sured environmental variability or stochastic processes such as
ecological drift or random speciation and extinction (Martiny et
al. 2011, Xiong et al. 2014, Yue et al. 2022, Zhang et al. 2022).
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Pelates sexlineatus hindgut microbiome is
governed by host control

Previous work on fish has revealed that both environmental and
host-related factors are important in shaping the hindgut micro-
biome (Sullam et al. 2012, Stephens et al. 2016, Tarnecki et al.
2017). Studies investigating the influence of spatial factors on the
fish gut microbiome are limited; however, one study found that
community composition was not significantly impacted by ge-
ography and instead host-related factors, particularly life stage,
strongly defined community composition, and diversity (Llewellyn
et al. 2016). While alpha diversity generally increased with de-
creasing latitude, distance-decay relationships were weak across
both spatial scales examined here, and associations with envi-
ronmental variables were generally limited and weak, suggest-
ing that host-related factors, rather than spatial or environmen-
tal factors, play a primary role in structuring and maintaining P.
sexlineatus hindgut bacterial communities. Previous work has also
highlighted the importance of host-related factors rather than
the external environment in driving shifts in the gut microbiome
of fish, e.g. host phylogeny (Sullam et al. 2012) and gut phys-
iology (Stephens et al. 2016). Host genetics may also influence
the gut microbiome (Kokou et al. 2018), and genetic structure of
dispersal-limited organisms has been shown to correlate with ge-
ography (e.g. algae) (Wood et al. 2022). Pelates sexlineatus is thought
to spawn near the mouth of estuaries, with juveniles moving into
and remaining in estuaries for at least one year after settlement;
therefore, dispersal may be limited to an individual estuary (Smith
and Suthers 2000), and may explain the weaker distance-decay
relationships on a smaller spatial scale (within estuaries). It is
important to note, however, that we did not measure the age of
individuals nor the internal environmental conditions of the fish
hindgut, and these may have important driving forces on these
communities (Li et al. 2020), limiting our ability to draw conclu-
sions on the buffering effect of the host. Future work should con-
sider the effect of both the external and internal environment on
the fish gut microbiome in order to further disentangle the re-
sponses of these communities to spatial and environmental in-
fluences.

While many of the dominant ASVs reported here are common
marine and estuarine environmental taxa (e.g. Methyloceaniabcter,
Cyanobium PCC-6307, and Synechococcus CC9902), ASVs belonging
to the bacterial families Propionibacteriaceae, Rhodobacteraceae,
and Vibrionaceae were also abundant, consistent with previous
findings (Larios-Soriano et al. 2021, Suzzi et al. 2022). The Pro-
pilonibacteriaceae produce microbial metabolites during glucose
fermentation and enzymes for fatty acid degradation (Neis et al.
2015, Chapagain et al. 2019) that may help in the breakdown of
food, produce valuable nutrients, and energy. Relationships be-
tween abundance of the Propionibacteriaceae and host diet have
been established (Larios-Soriano et al. 2021), and given that P. sex-
lineatus is an opportunistic carnivore that feeds on dominant food
sources within seagrass meadows, environmental filtering may
play an important role in structuring and maintaining the gut
microbiome across estuaries through diet; however, this was not
measured here (Sanchez-Jerez et al. 2002, Loo et al. 2019).

Conclusion

A central goal in microbial ecology is understanding the contri-
bution of spatial and environmental factors in driving patterns
of microbial composition and diversity. Biogeography has been
shown to apply to free-living microbial communities across in-
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terconnected aquatic environments, with the relative importance
of specific environmental variables identified at a range of spa-
tial scales. Patterns in free-living bacterial communities are likely
to differ from those in host-associated communities, which may
be buffered from environmental variation and under stronger se-
lective pressure from the niche habitat provided by the host and
are comparatively less well understood. We found that spatial
and environmental factors have different influences on the bac-
terial communities associated with estuary seawater, sediments,
and a common estuarine fish, P. sexlineatus, across six eastern
Australian estuaries spanning ~500 km. Seawater communities
exhibited strong distance-decay relationships as well as signifi-
cant associations with a range of environmental variables. Con-
versely, sediment and P. sexlineatus hindgut bacterial communi-
ties displayed weak distance-decay relationships and limited vari-
ation explained by measured environmental variables, potentially
reflecting environmental filtering across biogeochemical gradi-
ents or stochastic processes within estuary sediments and that
host-associated communities are governed most strongly by host-
related factors. These results provide important ecological in-
sights into the spatial distribution and some of the driving factors
of bacterial community composition across temperate estuarine
systems for multiple sample types.
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