113 research outputs found

    Properties of Reactive Oxygen Species by Quantum Monte Carlo

    Get PDF
    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3N4N^3-N^4, where NN is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles

    A New Phenomenon: Sub-Tg, Solid-State, Plasticity-Induced Bonding in Polymers

    Full text link
    Polymer self-adhesion due to the interdiffusion of macromolecules has been an active area of research for several decades [70, 43, 62, 42, 72, 73, 41]. Here, we report a new phenomenon of sub-Tg, solid-state, plasticity-induced bonding; where amorphous polymeric films were bonded together in a period of time on the order of a second in the solid-state at ambient temperatures nearly 60 K below their glass transition temperature (Tg) by subjecting them to active plastic deformation. Despite the glassy regime, the bulk plastic deformation triggered the requisite molecular mobility of the polymer chains, causing interpenetration across the interfaces held in contact. Quantitative levels of adhesion and the morphologies of the fractured interfaces validated the sub-Tg, plasticity-induced, molecular mobilization causing bonding. No-bonding outcomes (i) during the compression of films in a near hydrostatic setting (which inhibited plastic flow) and (ii) between an 'elastic' and a 'plastic' film further established the explicit role of plastic deformation in this newly reported sub-Tg solid-state bonding

    Molecular Computations for the Stabilization of Therapeutic Proteins

    Get PDF
    Molecular computations based on quantum mechanics and statistical mechanics have been applied to the understanding and quantification of processes leading to the degradation of therapeutic proteins. In particular, we focus on oxidation and aggregation. Specifically, two reactions, hydrogen transfer of hydrogen peroxide to form water oxide and the oxidation of dimethyl sulfide (DMS) by hydrogen peroxide to form dimethyl sulfoxide, were studied as models of these processes in general. Reaction barriers of the hydrogen transfer of H₂O₂ are in average of 10 kcal/mol or higher than the oxidation of DMS. Therefore, a two step oxidation mechanism in which the transfer of hydrogen atom occurs first to form water oxide and the transfer of oxygen to substrate occurs as the second step, is unlikely to be correct. Our proposed oxidation mechanism does not suggest a pH dependence of oxidation rate within a moderate range around neutral pH (i.e. under conditions in which hydronium and hydroxide ions do not participate directly in the reaction), and it agrees with experimental observations over moderate pH values. In the field of aggregation, we have developed a relatively simple approach for computing the change in chemical potential of a protein upon addition of an excipient (cosolute) to the protein solution. We have also developed a general approach to the design of excipients to prevent aggregation and are currently testing it experimentally.Singapore-MIT Alliance (SMA

    Mechanical Coupling in Myosin V: A Simulation Study

    Get PDF
    Myosin motor function depends on the interaction between different domains that transmit information from one part of the molecule to another. The interdomain coupling in myosin V is studied with restrained targeted molecular dynamics using an all-atom representation in explicit solvent. To elucidate the origin of the conformational change due to the binding of ATP, targeting forces are applied to small sets of atoms (the forcing sets, FSs) in the direction of their displacement from the rigor conformation, which has a closed actin-binding cleft, to the post-rigor conformation, in which the cleft is open. The “minimal” FS that results in extensive structural changes in the overall myosin conformation is composed of ATP, switch 1, and the nearby HF, HG, and HH helices. Addition of switch 2 to the FS is required to achieve a complete opening of the actin-binding cleft. The restrained targeted molecular dynamics simulations reveal the mechanical coupling pathways between (i) the nucleotide-binding pocket (NBP) and the actin-binding cleft, (ii) the NBP and the converter, and (iii) the actin-binding cleft and the converter. Closing of the NBP due to ATP binding is tightly coupled to the opening of the cleft and leads to the rupture of a key hydrogen bond (F441N/A684O) between switch 2 and the SH1 helix. The actin-binding cleft may mediate the rupture of this bond via a connection between the HW helix, the relay helix, and switch 2. The findings are consistent with experimental studies and a recent normal mode analysis. The present method is expected to be useful more generally in studies of interdomain coupling in proteins

    Prediction of Glycerol-Effect on Antigen-Antibody Binding Affinity from Molecular Dynamics Simulations

    Get PDF
    Many biological and biotechnological processes are controlled by protein-protein interactions in solution. In order to understand, predict and optimize such processes, it is valuable to understand how additives such as salts, sugars, polyols and denaturants affect protein-protein interactions. Currently, no methodology to foretell the effect of additives on protein-protein interactions has been established and frequently and extensive empirical screening to identify additives beneficial to the protein process is resorted to. In this work, we developed a methodology enabling the prediction of the additive-effect on the protein reaction equilibrium. The only prerequisite is that the atomic structure of the protein reactants and products are known. The methodology is based on the thermodynamic model for preferential interactions and makes use of molecular dynamics simulations to gauge additive-protein interactions. In order to validate our methodology, the change in binding affinity of the antibody fragment Y32S Fv D1.3 for lysozyme in the presence of varying glycerol concentrations is being calculated and the results will be compared with experimental data from literature. Finally, our methodology will be used to predict the glycerol effect on the binding affinity of wild type Fv D1.3 and various mutants.Singapore-MIT Alliance (SMA

    A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein

    Get PDF
    Identifying hot-spot residues – residues that are critical to protein–protein binding – can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein–protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36–57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein–protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins.Novartis (Firm)Singapore-MIT Alliance for Research and Technolog

    Preparation of DNA-Functionalised CdSe/ZnS Quantum Dots

    Get PDF
    We functionalised core-shell CdSe/ZnS quantum dots (QDots) with short-chain 3-mercaptopropionic acid (3MPA) to render these nanocrystalline semiconductor water-soluble. The ligand-exchange reaction was significantly improved with the use of an organic base to first remove the thiolic hydrogen. Non-bound 3MPA could be removed from the colloid by dialysis, but it was found that the choice of membrane is important. Cellulose membrane obliterated the photoluminescence of the QDots, while cellulose-acetate membrane worked well. Amine-modified DNA was then attached to the QDots through amide bond linkage, using EDC and NHS as reaction promoters. The pH of the reaction medium has an important impact on the successful attachment of functional DNA on the QDots.Singapore-MIT Alliance (SMA

    Proteins in Mixed Solvents: A Molecular-level Perspective

    Get PDF
    We present a statistical mechanical approach for quantifying thermodynamic properties of proteins in mixed solvents. This approach, based on molecular dynamics simulations which incorporate all atom models and the theory of preferential binding, allows us to compute transfer free energies with experimental accuracy and does not incorporate any adjustable parameters. Specifically, we applied our approach to the model proteins RNase A and T1, and the solvent components water, glycerol, and urea. We found that the observed differences in the binding of glycerol and urea to RNase T1 and A are predominantly a consequence of density differences in the first coordination shell of the protein with the cosolvents, but the second solvation shell also contributes to the overall binding coefficients. The success of this approach in modeling preferential binding indicates that it incorporates the important underlying physics of proteins in mixed solvent systems and that the difficulty in quantitative prediction to date can be surmounted by explicitly incorporating the complex protein-solvent and solvent-solvent interactions.Singapore-MIT Alliance (SMA

    A Computational Study to Understand the Surface Reactivity of Gold Nanoparticles with Amines and DNA

    Get PDF
    We conducted a computational adsorption study of methylamine on various surface-models of gold nanoparticle which is facetted by multiple {111} and {100} planes. In addition to these flat surfaces, our models include the stepped surfaces (ridges) formed along the intersections of these planes. Binding on the flat surface was fairly weak, but substantially stronger on the ridges by an average of 4.4 kcal/mol. This finding supports the idea that ssDNA’s interaction with gold nanoparticles occurs through the amines on the purine/pyrrimidine rings. Also, this typically undesirable interaction between DNA and gold nanoparticles is expected to increase as the particle size decreases. Our analysis suggests that particle size is an important controlling parameter to reduce this interaction.Singapore-MIT Alliance (SMA

    Effects of Solute-Solute Interactions on Protein Stability Studied Using Various Counterions and Dendrimers

    Get PDF
    Much work has been performed on understanding the effects of additives on protein thermodynamics and degradation kinetics, in particular addressing the Hofmeister series and other broad empirical phenomena. Little attention, however, has been paid to the effect of additive-additive interactions on proteins. Our group and others have recently shown that such interactions can actually govern protein events, such as aggregation. Here we use dendrimers, which have the advantage that both size and surface chemical groups can be changed and therein studied independently. Dendrimers are a relatively new and broad class of materials which have been demonstrated useful in biological and therapeutic applications, such as drug delivery, perturbing amyloid formation, etc. Guanidinium modified dendrimers pose an interesting case given that guanidinium can form multiple attractive hydrogen bonds with either a protein surface or other components in solution, such as hydrogen bond accepting counterions. Here we present a study which shows that the behavior of such macromolecule species (modified PAMAM dendrimers) is governed by intra-solvent interactions. Attractive guanidinium-anion interactions seem to cause clustering in solution, which inhibits cooperative binding to the protein surface but at the same time, significantly suppresses nonnative aggregation.Singapore-MIT Allianc
    corecore