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ABSTRACT 

Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to 

elucidate a protein’s function and assist in designing therapeutic molecules to target those 

residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to 

predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the 

structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an 

accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot 

residues for many proteins for which the structure of the protein-protein complexes are not 

available, thereby providing a clue to their functions and an opportunity to design therapeutic 

molecules to target these proteins. 
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INTRODUCTION 

It is estimated that a human protein-protein interaction (PPI) interactome is composed of 

as many as 650,000 different PPIs, and understanding these interactions is expected to lead to 

new therapeutic targets.
1
 Proteins are the work-horse of the cellular machinery, and the 

formation of specific protein complexes led by specific PPIs underpins many cellular processes. 

Aberrant PPIs, either through the loss of a function or through the formation and/or stabilization 

of a protein-protein complex at an inappropriate time or location, are implicated in many 

diseases such as cancer and autoimmune diseases. Elucidating the regions of the protein that 

drive the PPI helps in understanding the protein function and in designing drugs that target the 

regions that are involved in the PPI.
2,3

  

 

 Over the past decade, a large number of protein structures have been solved, and the 

number of solved structures of protein-protein complexes has been also increasing. These 

structures of the complexes yield information on the residues that are present in the protein-

protein binding regions. These residues constitute the structural epitope of the protein. However, 

not all of the residues that are present in the binding region contribute equally to the binding 

energy of the complex. In pioneering work on the binding of human growth hormone (GH) to its 

receptor, Cunningham et al. identified a region of energetically important residues on the protein 

surface that were critical to the binding.
4
 Following their work and other experiments, it became 

evident that only a few of the binding-region residues contribute a major component of the 

binding energy. These residues, which constitute the functional epitope, are termed hot-spot 

residues. Although a qualitative definition of hot-spot residues is straightforward, consensus on 

the quantitative definition of hot-spot residues is still lacking. One of the definitions of a hot-spot 
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residue can be construed as the residue that contributes more than a certain threshold (e.g., 2.5 

kcal/mol 
5
) to the binding energy of the PPI. Because direct experimental measurements of the 

contributions of individual residues to the protein-protein binding free energy are currently very 

tedious, an operational definition of a hot-spot residue is often used. Operationally, a hot-spot 

residue can be defined as a residue that, when mutated to alanine, leads to at least some given 

increase (e.g., 10-fold) in the protein-protein dissociation constant (KD).  

 

Experimentally, site-directed mutagenesis has been widely used to analyze how protein-

protein interfaces function. In this method, subsets of the protein residues are systematically 

mutated, mostly one at a time, and the effect of each mutation on the protein-protein binding 

energy is analyzed. The preferred residue to mutate to is alanine because the alanine amino acid 

lacks a side chain beyond the -carbon. Hence, the binding assays performed in conjunction with 

(alanine) mutagenesis identify hot-spot residues as defined by the operational definition. In these 

experiments, it is tacitly assumed that the mutation of a residue to alanine does not lead to 

structural perturbations of the protein. In fact, Rao et al. have aptly demonstrated the limitation 

of such an assumption.
6
 In their experiments, although the mutation F19A led to a significant 

reduction in the binding strength of human Prolactin to its receptor, residue F19 cannot be 

considered to be a hot-spot residue because the F19A mutation is accompanied with significant 

structural changes.
6
 In experiments in which site-directed mutagenesis is restricted to only 

surface-exposed residues, as identified from the protein structure, the chances of protein structure 

perturbation upon mutation greatly diminishes.  
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On the computational front, a few tools have been developed to identify hot-spot 

residues. All of these bioinformatics tools, which have been trained over a dataset, can be 

broadly classified into two categories: tools that are based on the structure of the protein-protein 

complex and tools that are based on the sequence/structure of the unbound protein. The first 

category includes energy-based tools
7-11

, and machine learning-based tools such as PCRPi
12

, 

KFC
13

, MINERVA
14

, HotPoint
15

, and others
16

. While these tools can identify hot-spot residues 

with great accuracy, the requirement of the protein-protein complex structure severely limits the 

application of such tools, and these tools cannot be employed to predict hot-spot residues when 

the structure of the protein-protein complex is unavailable. The other category of computational 

tools identifies hot-spot residues by using the sequence or structure of the unbound protein alone. 

Tool such as ISIS
5,17

 is designed to identify protein-protein interaction hot-spot residues using an 

unbound protein structure and/or sequence. The majority of other sequence-based computational 

tools, e.g., PredUs
18

, meta-PPISP
19

 and ConSurf
20

, are designed to identify protein-protein 

binding-region residues. Another tool, called FTMAP
21

, has been designed to predict hot-spot 

residues of small molecule ligand interactions with a protein by using the structure of the protein. 

Readers are directed to reviews
22,23

 from the laboratory of Nussinov on the available 

computational tools for predicting the binding-region residues. In this article, we present a new 

method for the prediction of the hot-spot residues from the structure of the unbound protein. We 

also compare our method to other methods (ISIS
5,17

, meta-PPISP
19

, PredUs
18,24

 and ConSurf
20

), 

which also use the sequence/structure information of only the unbound protein to predict the hot-

spots/binding region residues of the protein.  
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Recently, our group developed a tool that was called the spatial-aggregation-propensity 

(SAP) to identify aggregation-prone regions in proteins.
25

 SAP is a measure of the dynamic 

exposure of hydrophobic patches on the protein surface. The SAP tool can also predict, using the 

unbound protein structure, the binding regions in a protein.
26

 Thus, a patch of exposed 

hydrophobic residues that is indicated by a high SAP value of the region is a good indicator of a 

protein binding region. Furthermore, previous work on the detection of hydrophobic patches on 

the surfaces of proteins has also shown the utility of finding hydrophobic patches for identifying 

protein binding regions.
27

 Recently, Kozakov et al. also demonstrated that protein hot-spots are 

characterized by regions that are patterned with hydrophobic and polar residues.
28

 With this 

background in mind, we developed a computational tool called the spatial-interaction-map 

(SIM).  

 

We apply the SIM tool to a number of proteins, to predict their hot-spot residues. By 

design, the SIM tool can be applied to a single (i.e., static) structure of the protein and to multiple 

structures of the protein. When the SIM tool is applied to a static structure, we refer to it as 

sSIM; when the SIM tool is applied to multiple structures, we refer to it as dSIM. We compare 

the SIM-predicted residues with the experimentally known hot-spot residues and the 

experimentally known binding-region residues; we also compare ISIS, PredUs, meta-PPISP and 

ConSurf in terms of their ability to predict hot-spot and binding-region residues for these 

proteins. Because a few previous studies on the characterization of protein-protein interfaces 

have cast doubt on the utility of hydrophobicity for the prediction of the protein-protein 

interface
29-31

, we also compare our predictions obtained by using SIM against predictions 

obtained by performing simple hydrophobic analysis. For benchmarking purposes, we also report 
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the results that were obtained when all of the exposed residues were considered to be hot-spot 

and binding-region residues.  

 

For validation of our computational method, we resort to the experimentally known hot-

spot residues and binding-region residues of evolutionarily conserved protein-protein 

interactions. Publicly available databases such as ASEdb
32

 and BID
33

 contain a repository of 

experimentally known hot-spot residues, and the HotSprint
34

 database contains a repository of 

computational hot-spot residues. However, quite a large number of protein-protein interactions 

contained in ASEdb and BID belong to an antigen-antibody interaction, which is an 

evolutionarily non-conserved interaction. Furthermore, these databases do not necessarily 

provide information on the known binding-region residues. For most of the protein-protein 

interactions, a number of binding-region residues still lack experimental data that can be used for 

classifying them as hot-spot or non-hot-spot residues. This lack of information can affect the 

performance of a computational method when the reported method’s accuracy is based on the 

ratio of the correctly predicted hot-spot residues to the total number of predicted residues. To 

account for this lack of experimental information, we calculate the accuracy and the theoretical 

maximum accuracy (defined as the accuracy when all of the binding region residues that have 

not been experimentally tested are assumed to be hot-spot residues) for each method. Hence, in 

this work, we study only those proteins for which the protein-protein interaction is evolutionarily 

conserved and for which both the hot-spot residues and the binding-region residues are 

experimentally known. 
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In this report, we show the results for IL-13 protein. The results for other proteins, 

specifically IL-2, growth hormone receptor, IL-15, growth hormone, Fc-domain of an IgG1, 

erythropoietin, IL-13Rα1 and EGFR, are given in the Supporting Information, Section S4. For all 

of these proteins, we report any concerns on the quality of the experimental data in the 

Supporting Information tables.  
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METHODS 

Spatial-Interaction-Map (SIM) 

The input to the spatial-interaction-map (SIM) tool is a fully atomistic three-dimensional 

structure of the protein (see Supporting Information, Sections S1.1 for the details on the methods 

used to obtain protein structure and perform molecular simulations). sSIM indicates SIM 

computed on a single protein structure, and dSIM indicates SIM computed over multiple 

structures of the protein. These multiple structures of the protein are generated using molecular-

dynamics simulations. Calculations to perform SIM analysis can be divided into four steps. Step 

I: using the structure of the protein, we assign an effective-hydrophobicity value to each of the 

residues of the protein. The effective hydrophobicity eff of the i
th

 residue is defined as:
25

  

 

SAA, the solvent-accessible area of the side-chain atoms of residue i, is computed at each 

simulation snapshot (for sSIM, the summation is over only one structure); the SAA of the side-

chain atoms of fully exposed residues (e.g., for amino acid X) is obtained by calculating the SAA 

of the side-chain atoms of the middle residue in the fully extended conformation of the tripeptide 

Ala-X-Ala, and the hydrophobicity of each residue i is obtained from the hydrophobicity scale 

of Black and Mould.
35

 The SAA is the area of the surface that is obtained from rolling a probe 

sphere on the surface of the protein. A probe sphere of radius 1.4 Å, which is equivalent to that 

of the water molecule, is used. The van der Waals radii of each of the atoms of the protein are 

taken from the CHARMM22 force-field.
36

 We normalize the hydrophobicity scale in such a way 

that glycine has a hydrophobicity of zero. Thus, residues that are more hydrophobic than glycine 

(Ala, Cys, Pro, Met, Val, Trp, Tyr, Ile, Leu, and Phe) have positive values, while residues that 
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are less hydrophobic than glycine (Thr, Ser, Lys, Gln, Asn, His, Glu, Asp, and Arg) have 

negative values for i. Furthermore, we normalize the hydrophobicity scale in such a way that 

the most hydrophobic residue (Phe) has a value of 0.5 while the least hydrophobic residue (Arg) 

has a value of -0.5. Step II: the second step of the SIM tool identifies the clusters of highly 

hydrophobic residues that are present on the protein surface. We define a cutoff value for the 

effective hydrophobicity (cutoff); for each cutoff value, we identify all of the residues that have 

eff,i > cutoff as highly hydrophobic residues. A cluster of highly hydrophobic residues is defined 

as two or more highly hydrophobic residues being present in the vicinity of each other (see also 

the Supporting Information, Section S2). In our work, the distance between two residues is 

defined as the least distance between any two atoms of these residues. We use a (Euclidian) 

distance of 10 Å between two residues as a cutoff for defining the vicinity. The distance of 10 Å 

(i.e., the patch size of ~320 Å
2
) corresponds approximately to the lower limit of the size of the 

protein-protein interface.
37

 We then implement the reverse Cuthill-McKee algorithm to identify 

the clusters of highly hydrophobic residues.
38

 For computing the dSIM, the SAA is averaged 

over the simulation, while the distances between the residues are computed for a representative 

frame (in our work, we use the last frame from the MD simulation). Step III: the third step of the 

SIM identifies solvent-exposed charged-residues (Arg, Lys, Asp, Glu) in the vicinity of these 

hydrophobic clusters. Any solvent-exposed charged-residue within a (Euclidian) distance of 5 Å 

from any of the highly hydrophobic residues is selected as belonging to the cluster as well. A 

SAA cutoff of 10 Å
2
 is used to distinguish between solvent-exposed and buried residues. Step 

IV: the fourth step of SIM further narrows down the number of predicted residues by discarding 

all but the most highly conserved residues. We use a ConSurf score of less than 0.5 as an 
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indicator of high evolutionary conservation (see Supporting Information, Section S3). Any other 

sequence-conservation algorithm can be used as well.  

Exposed Residues  

For the multiple structures of the protein obtained using MD simulations, we use the VMD 

software
39

 to compute the solvent-accessible area of the side-chain atoms (including hydrogen 

atoms) of each residue. The van der Waal radius of each atom was assigned using the 

CHARMM22
36

 force field, and a probe radius of 1.4 Å was used to represent the water molecule. 

Any residue with a SAA of its side-chain atoms of greater than 10 Å
2
 is identified as an exposed 

residue. 

Simple Hydrophobic Analysis 

We use the above-mentioned method to identify all of the exposed residues on the protein 

surface. All of the exposed hydrophobic residues (i.e., TRP, TYR, VAL, MET, PHE, PRO, ILE, 

LEU, CYS and ALA) are considered to be predicted residues when using this method. For 

brevity, this method is referred as “Hydrophobic” in all of the figures. 

Bioinformatics Tools 

The details on the bioinformatics tools can be found in the Supplementary Information, Section 

S1.2. 

Identification of binding-region residues and hot-spot residues 

From the protein-protein complex structure, residues that are present in the binding region are 

identified from their loss of solvent accessibility upon binding by using the PDBePISA tool 

(http://pdbe.org/pisa).
40

 If the protein of interest binds to multiple partners, then we identify all of 

http://pdbe.org/pisa
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the residues that are involved in binding to all of its partners as binding-region residues. We also 

identify all of the experimentally known hot-spot residues for each of the proteins. Only the 

residue that upon mutation to alanine leads to at least a 10-fold increase in the dissociation 

constant KD of the protein-protein binding (i.e., G > 1.37 kcal/mol) are retained as hot-spot 

residues. To discount the allosteric effects of mutations, only the hot-spot residues that are 

present in the binding region are considered.   

Evaluation of Performance 

We evaluate the performance of each method for each protein in terms of its accuracy and 

coverage. The accuracy is calculated as the ratio of the number of correctly predicted residues to 

the total number of predicted residues, whereas the coverage is calculated as the ratio of the 

number of correctly predicted residues to the number of experimentally observed residues. The 

accuracy and coverage is calculated for both the binding-region residue prediction and the hot-

spot residue prediction. Let P be the set of all of the residues that are predicted by a given 

method for a given protein. Let B be the set of all of the experimentally known binding-region 

residues, and let H be the set of all of the experimentally known hot-spot residues for a given 

protein. For each protein, we also generate the set NH of all of the experimentally known 

binding-region residues that are experimentally known to not be hot-spot residues. Then, the 

accuracy (ACC) and coverage (COV) of a method for a protein are given as: 

ACCB = |PB| / |P|,   

COVB = |PB| / |B|, 

ACCH = |PH| / |P|, 

COVH = |PH| / |H|, 
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where |.| represents the cardinality of the set,  represents the intersection of the sets, and the 

superscript c denotes the complement of the set. Subscripts B and H indicate the performance of 

a method for predicting the binding-region and hot-spot residues, respectively. In most of the 

instances, only a few of the residues that are involved in protein binding have been mutated 

experimentally to identify their contribution to the protein binding. Hence, we also compute the 

theoretical maximum accuracy, maxACC, of each method for the prediction of hot-spot residues 

as the ratio of the number of predicted residues that lie in the binding region and are not non-hot-

spot residues to the total number of residues predicted. Here, we have assumed that whenever 

experimental information is unavailable for a binding-region residue, we count that residue as a 

hot-spot residue.  

maxACCH = |PBNH
c
| / |P|. 

True positives (the number of predicted residues that are also experimentally known hot-spot 

residues), false positives (the number of predicted residues that are not experimentally known 

hot-spot residues), and false negatives (the number of experimentally known hot-spot residues 

that are not predicted to be hot-spot residues) for each of the methods are also reported in the 

Supporting Information, Tables S2-S7. 

  



 12 

RESULTS 

Identification of hot-spot residues using SIM 

The sSIM tool is applied to a protein structure that is obtained from either x-ray or NMR studies. 

Whenever the structure of the protein is not available, the SIM tool can also be applied to protein 

structures that are obtained from any other method, such as homology modeling. The dSIM tool 

is applied to multiple structures of the protein; these multiple structures can be generated by 

performing fully atomistic molecular-dynamics simulations on the protein. First, SIM computes 

the effective hydrophobicity, eff, of each residue in the protein. eff normalizes the 

hydrophobicity of each residue by its fractional solvent-accessible-area (SAA); thus, all buried 

(including hydrophobic) residues have eff equal to zero. SIM then generates a contact-map 

matrix C of dimensions NN, where N is the total number of residues in the protein. Figure 1A 

depicts the contact-map matrix for protein IL-13. An element Cij of this matrix is one if the 

residues i and j are within 10 Å of each other; otherwise, it is zero. By design, the matrix C is 

symmetric. SIM then applies a high-hydrophobicity filter to set all of the entries of row and 

column i to zero if the eff of residue i is less than cutoff. In Figure 1B, we show the results that 

were obtained by using cutoff = 0.15 to filter out the residues with low eff from the matrix C. 

The reverse Cuthill-Mckee algorithm (as implemented in MATLAB) is then applied to reorder 

this sparse matrix in such a way as to identify the clusters of highly hydrophobic residues.
38

 

Figure 1C shows that the four clusters C1, C2, C3, and C4, which are composed of highly 

hydrophobic residues, are present on the surface of IL-13. This procedure selects clusters that are 

composed of exposed hydrophobic residues. We discard the clusters (e.g., cluster C3) that have 

only one highly hydrophobic residue (see the Supporting Information, Section S2). Furthermore, 

the clusters that are very close to the N- and C-termini are also discarded (e.g., cluster C4). 
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Surface-exposed charged residues in the vicinity of the residues in clusters C1 and C2 are then 

identified from the protein structure. We further reduce the number of the predicted residues by 

eliminating the residues that are less conserved along evolution. Figure 2A maps these clusters 

onto the IL-13 surface. Each cluster is composed of exposed conserved charged residues and 

exposed conserved hydrophobic (i.e., eff > cutoff) residues. For comparison, we have also 

mapped the hydrophobicity of each residue () and the ConSurf score of each residue onto the 

IL-13 surface in Figures 2C and 2D, respectively. Figure 2C shows that this protein has many 

exposed hydrophobic residues and that these regions are distributed over its surface. Thus, it 

becomes very difficult to pick a certain hydrophobic region that is involved in binding compared 

to other regions. Similarly, many conserved residues are exposed on the protein surface, as seen 

in Figure 2D, which makes the selection of a certain conserved region over other regions 

difficult.  

 

The number of predicted residues using SIM can be controlled by varying the value of 

cutoff. At a very large value of cutoff, a small number of residues are predicted, while at 

moderate values of cutoff, a large number of residues are predicted. For cutoff = 0, even the 

buried (and conserved) residues will be predicted, and for cutoff = -0.5, all of the conserved 

residues in the protein will be predicted. Hence, preferably, cutoff should be set to values that are 

greater than 0.1.  

Interleukin-13 (IL-13) 

Human IL-13 is a ~12 kDa cytokine and is important for the development of the T-helper cell 

type 2 (Th2) response. Dysregulation of the IL-13-mediated response has been linked to asthma 

and allergic diseases. Structurally, IL-13 belongs to the four-helix bundle superfamily. IL-13-
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mediated hetero-dimerization of receptors IL-13R1 and IL-4R initiates the downstream 

signaling via recruitment and activation of STAT6. IL-13 first binds to IL-13R1 (with KD 

=1.69 nM) followed by the binding of this complex to the IL-4R receptor. IL-13 can also bind 

to another receptor, IL-13R2, with a very high affinity (KD =15.5 fM).
41

 Lupardus et al. have 

characterized the binding energetic of the IL-13  IL-13R1 and IL-13  IL-13-R2 interactions 

by mutating the residues on the surface of IL-13 to alanine.
41

 The resulting change in the 

interaction energy upon mutation was measured by isothermal titration calorimetry and surface 

plasmon resonance. Their experiments identify nine hot-spot residues on IL-13; eight of these 

hotspots are crucial for binding to IL-13R1, while three are crucial for binding to IL-13R2. 

The residues K104 and F107 are two of the most crucial residues for binding to both of the 

receptors. Indeed, the mutation K104A or F107A leads to more than a 5000-fold increase in the 

KD of IL-13 binding to IL-13R2. To identify the binding-region residues of IL-13, we use the 

available x-ray structures of IL-13 bound to IL-13R1 (PDB ID: 3BPO
42

) and IL-13 bound to 

IL-13R2 (PDB ID: 3LB6
41

).  

 

We predict the hot-spot and binding-region residues by sSIM, meta-PPISP, PredUs and 

ConSurf, using the available NMR structure (PDB ID: 1IJZ
43

) of unbound IL-13. For ISIS, we 

use the sequence of IL-13. We also perform a 20 ns MD simulation of IL-13 and apply the dSIM 

tool to the last 15 ns of the simulation. As we decrease the value of cutoff from 0.2 to 0.1, we 

identify more and larger clusters by sSIM. A similar trend is observed for dSIM; however, no 

cluster is identified by dSIM when cutoff = 0.2 is used. Figure 3A shows that, for predicting a 

binding-region residue, both meta-PPISP and ISIS fare no better than randomly selecting an 

exposed residue on the surface of IL-13. Similarly, selecting a conserved exposed residue or an 
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exposed hydrophobic residue of IL-13 does not have any advantage over the random selection of 

exposed residues. Thus, structural and sequence-conservation information alone suffers from low 

accuracy and cannot be used to identify binding-region residues. PredUs can predict binding-

region residues with an accuracy of 50%, which is almost twice the accuracy of tools such as 

meta-PPISP and ISIS. The SIM tool performs much better at predicting binding-region residues 

than all of these tools, and the coverage of the SIM prediction increases at the cost of the 

accuracy as we decrease the value of cutoff. The SIM tool, even at a low cutoff, has almost twice 

the chance of correctly predicting a residue to be in the binding region compared to meta-PPISP, 

PredUs and ISIS.  

 

Moreover, the SIM tool can predict preferentially the hot-spot residues in the binding 

region (see Figure 3B and the Supporting Information, Section S4.1). The SIM tool can predict 

more than 1/3
rd

 of the hot-spot residues correctly and with a considerably higher accuracy. The 

SIM analysis at a high value of cutoff correctly predicts the hot-spot residues that are important 

for binding to the high-affinity receptor IL-13R2, and reducing the value of cutoff identifies the 

hot-spot residues for binding to the low-affinity receptor IL-13R1. Importantly, both sSIM and 

dSIM can identify correctly K104 and F105, which are the two most important hot-spot residues 

of IL-13. The tools meta-PPISP, PredUs and ISIS can also identify the hot-spot residues for 

binding to IL-13R1 and IL-13R2, respectively, although with a low accuracy. Moreover, both 

meta-PPISP and ISIS fail to predict the K104 and F105 residues. The lack of experimental data 

on the energetic contribution of all of the residues that are present in the protein-binding 

interface is highlighted in Figure 3B by large error bars on the accuracy of each method.  
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DISCUSSION 

A large amount of structural information has been accumulated over the years on proteins and 

protein-protein complex structures. Whereas protein-protein complex structures yield 

information on the residues that are present in the binding interface, additional subsequent 

experiments or computational studies must be performed to determine the contributions of each 

of these residues to the protein-protein binding configurations. Alanine-scanning mutagenesis 

experiments have been the key driver on the experimental front to identify precisely the role of 

each of the binding-region residues. On the computational front, applications of computational 

alanine-scanning mutagenesis (in which the energy functional is parameterized by using 

available experimental alanine-mutagenesis data) on the protein-protein complex structure has 

been shown to be promising in determining the role of these binding-region residues. While in 

general, a large number of residues are buried in the protein-protein complex interface, only a 

fraction of these residues, termed hot-spot residues, are critical to the PPIs. The presence of these 

hot-spot residues has been confirmed experimentally by alanine mutagenesis experiments in 

which the mutation of only a few of the binding-region residues to alanine has abrogated the 

binding of the proteins to a large extent. Although a plethora of computational tools are available 

to determine the hot-spot residues from the protein-protein complex structure, there is a general 

lack of computational tools to identify hot-spot residues by using the sequence / structure of the 

unbound protein alone.  

 

In this work, we have shown that a new computational tool, called SIM, can be used to 

predict the hot-spot residues of an evolutionarily conserved protein-protein interaction by using 

the structure of the unbound protein alone. The SIM tool is devised to identify clusters of 
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exposed hydrophobic residues along with the exposed charged residues because both 

hydrophobic and electrostatic interactions are expected to contribute greatly to protein-protein 

binding energy. To identify the exposed hydrophobic residues, the SIM tool uses the normalized 

(with respect to its fractionally exposed surface area) hydrophobicity value for each residue. In 

the previous studies from our laboratory, normalized hydrophobicity values for residues have 

been shown to be superior to non-normalized hydrophobicity values (where the hydrophobicity 

value of a residue depends only on its residue type irrespective of its exposed area in the protein 

structure) for the prediction of protein binding-region residues in the laboratory.
25,26

 Moreover, 

sequence conservation is used as an additional criterion to improve the quality of the SIM 

predictions because the conservation of residues over evolution is often considered to be an 

indicator of the importance of the residue for either the protein structure or protein interaction. 

The SIM tool can be applied either directly to the static structure of the protein or to the multiple 

conformations generated via the MD simulations. While the requirement of the protein structure 

limits the applicability of the SIM tool to the proteins with known structure, advances in the 

structure modeling of proteins using homology modeling can be used to alleviate this limitation. 

The SIM tool based on molecular simulations to some extent accounts for the contribution of the 

protein flexibility and dynamic exposure of the residues.  

 

In this work, we validate the predictions of hot-spot residues by the SIM tool for 43 

experimentally known hot-spot residues of six proteins: IL-13, IL-2, GHR, Fc-domain, IL-15 and 

GH. For these experimentally known hot-spot residues, we show that SIM predicts hot-spot 

residues with an average accuracy of 36-57% for cutoff = 0.2 and 23-45% for cutoff = 0.15 (see 

Supporting Information, Section S4.12; the lower bound represents the average accuracy, while 
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the upper bound represents the average theoretical maximum accuracy). The hot-spot residue 

prediction accuracy of the SIM (see Figure 4B) is superior compared to meta-PPISP (3-26%), 

ISIS (2-26%) and ConSurf (8-26%). PredUs (8-43%) can predict hot-spot residues with a 

comparable average theoretical maximum accuracy, compared to the SIM tool. Furthermore, 

from the comparison of SIM predictions with the hydrophobicity predictions, it also becomes 

evident that the SIM tool, which identifies the clusters of residues that have high effective 

hydrophobicity and neighboring charged residues, is more accurate for the prediction of hot-spot 

residues compared to a simple hydrophobic analysis, which identifies all of the exposed 

hydrophobic residues as hot-spot residues. The average accuracy of SIM for the prediction of 

binding-region residues (69% for cutoff = 0.2 and 61% for cutoff = 0.15), as seen in Figure 4A, 

is also better than the average accuracy of meta-PPISP (32%), PredUs (51%), ISIS (32%) and 

ConSurf (33%).  

 

It should be noted that the observed performance of SIM and other computational tools 

for hot-spot residue prediction is affected by a number of factors. Most importantly, the quality 

of the experimental data can be dubious. We have observed a number of experiments in which a 

mutation of a residue that is not a binding-region residue leads to a substantial loss of binding. 

This allosteric effect of a mutation might be from a protein-structure perturbation that occurs 

when the mutation occurs. Unless there is an available structure of the protein-protein complex, 

it becomes difficult to determine, a priori, whether the mutated residue is a binding-region 

residue or a non-binding region residue. Hence, in the absence of the structure of the protein-

protein complex, the experimentalist might report these non-binding region residues as hot-spot 

residues. These experimental false positives will cause the observed coverage of the predictive 
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computational methods to be lower than the true coverage. Second, a lack of exhaustive 

experimental data on the identification of all hot-spot residues of a protein leads to lower 

observed accuracy of the predictive computational methods than their true accuracy. In fact, for 

the proteins that we studied, experimental mutagenesis data were lacking for a number of 

binding-region residues, and this lack of data is reflected by a large difference between the 

accuracy and the theoretical maximum accuracy of hot-spot residue prediction in our analysis. 

Third, any computational tool that is based on the structure of the unbound protein will fail to 

account for the conformational change in the structure of the protein upon binding to its receptor. 

Although simple molecular-dynamics simulations can account for some of the protein flexibility 

around the unbound conformation, advanced molecular simulation techniques must be used to 

observe large protein conformational changes in these simulations.  

 

While the performance of the SIM tool can be hampered due to the above limitations, the 

SIM tool nevertheless offers some unique advantages. SIM offers flexibility in predicting hot-

spot residues with either high accuracy or high coverage. This flexibility of SIM can be applied 

in systematic mutagenesis experiments to identify hot-spot residues. We suggest that initially a 

high value of cutoff be used for predicting a small number of residues. The mutagenesis 

experiments can then be performed on these residues. The value of cutoff can be further lowered 

in a stepwise fashion to identify a larger number of residues, which can then be tested 

experimentally. One of the limitations of the SIM tool is its inability to associate the identified 

hot-spot residues with a binding partner. If the protein binds to two receptors, the SIM tool 

cannot predict whether the predicted hot-spot residues are involved in binding to the first 

receptor or the second receptor or both. Hence, when the SIM-identified hot-spot residues test as 
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negative in experiments in which the binding of the mutated protein to one of its receptors is 

measured, this test does not conclusively indicate that the predictions are incorrect. The predicted 

hot-spot residues might be important for binding to its other receptor, and hence, caution should 

be exercised when comparing the SIM predictions with the experimental results. The strategy of 

rational mutagenesis by combining experimental mutagenesis with in silico hot-spot residue 

prediction can lead to identification of hot-spot residues by performing a smaller number of 

experiments. The chances of success from a mutagenesis experiment that attempts to correctly 

identify hot-spot residues are much higher when guided by the SIM tool. 
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FIGURE LEGENDS 

 

Figure 1: (A) The contact-map matrix for IL-13 generated using its structure (PDB ID: 1IJZ). 

The indices represent the residue numbers. Green indicates 0 while yellow indicates 1. (B) The 

contact-map matrix for IL-13 after the application of a high-hydrophobicity filter. Here, we used 

cutoff = 0.15. (C) The contact-map matrix is clustered using the reverse Cuthill-McKee 

algorithm. Cluster C3 has only one element and hence is discarded. All of the residues in cluster 

C4 are very close to the N-terminal and, hence, C4 is also discarded. The row and column of this 

matrix do not represent the residue number. 

 

Figure 2: (A) The sSIM map of IL-13 for cutoff = 0.15. The red region indicates residues that 

were predicted by sSIM. (B) Experimental hot spots (C) Hydrophobicity scale mapped onto the 

IL-13 structure. The red (value > 0) indicates hydrophobic residues. (D) ConSurf scores mapped 

onto the IL-13 structure. The red (value < 0.5) indicates conserved residues. 

 

Figure 3: (A) Accuracy and coverage of various methods for the predictions of binding-region 

residues of IL-13. The results for sSIM (green) and dSIM (red) are also shown for various values 

of cutoff. (B) Accuracy and coverage of various methods for the predictions of hot-spot residues 

of IL-13. The results for sSIM (green) and dSIM (red) are also shown for various values of 

cutoff. The error bars indicate the theoretical maximum accuracy. Because the experimentally 

known hot spot K105 is not conserved (ConSurf score = 2.83), the exposed and conserved 

criteria have a coverage of less than 100%. 
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Figure 4: (A) Average accuracy and average coverage of various methods for the prediction of 

the binding-region residues of six proteins (IL-13, IL-2, GHR, Fc, IL-15, and GH). The results 

for sSIM (green) are shown for two values of cutoff. (B) Average accuracy and average coverage 

of various methods for the prediction of the hot-spot residues of six proteins. The results for 

sSIM (green) are shown for two values of cutoff. The error bars indicate the theoretical 

maximum accuracy. Note that the y-axis scale is 0-60%. 
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