
 
 

  
Abstract— Many biological and biotechnological processes 

are controlled by protein-protein interactions in solution. In 
order to understand, predict and optimize such processes, it is 
valuable to understand how additives such as salts, sugars, 
polyols and denaturants affect protein-protein interactions. 
Currently, no methodology to foretell the effect of additives 
on protein-protein interactions has been established and 
frequently and extensive empirical screening to identify 
additives beneficial to the protein process is resorted to.   

In this work, we developed a methodology enabling the 
prediction of the additive-effect on the protein reaction 
equilibrium. The only prerequisite is that the atomic structure 
of the protein reactants and products are known. The 
methodology is based on the thermodynamic model for 
preferential interactions and makes use of molecular 
dynamics simulations to gauge additive-protein interactions. 
In order to validate our methodology, the change in binding 
affinity of the antibody fragment Y32S Fv D1.3 for lysozyme 
in the presence of varying glycerol concentrations is being 
calculated and the results will be compared with experimental 
data from literature. Finally, our methodology will be used to 
predict the glycerol effect on the binding affinity of wild type 
Fv D1.3 and various mutants. 

 
Index Terms— Binding affinity, glycerol, molecular 

dynamics, preferential interaction.  

I. INTRODUCTION 
ROTEIN-protein interactions control a wide range of 

protein processes including in vivo protein complex 
formation, protein separation processes such as salting out 
and affinity chromatography, protein crystallization, and 
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protein aggregation [1]. In these processes, protein-protein 
interactions typically occur in the presence of a fair amount 
of small molecules (> 100 mM) such as salts, sugars, 
polyols or denaturants, which have a similar magnitude of 
affinity for protein binding as water [2]. In the following, 
such weakly interacting small molecules are referred to as 
additives and their interactions with the protein as additive-
protein interactions.  For decades, it has been known that 
the additive type and concentration can affect protein-
protein interactions, and the use of additives to manipulate 
protein processes is widespread [3-7]. Since the additive 
effect on protein-protein interactions is specific for each 
protein reaction [8, 9], a priori knowledge of the change in 
protein-protein interactions caused by an additive would be 
desirable. However, no methodology to predict the 
additive-effect on protein-protein interactions has been 
established, and consequently, extensive empirical searches 
for additives and their concentrations to understand or 
better the performance of a particular protein process are 
needed [10].  

 
In this work a methodology is developed which is able 

to predict additive-effects on protein reactions. The type of 
the reaction is restricted to reversible reactions such as 
non-covalent protein association or folding, and the atomic 
structures for the protein reactants and products need to be 
known. The methodology is based on the thermodynamic 
model for preferential interaction of an additive with a 
protein. In this model, the preferential interaction 
coefficient is a measure for the change of the protein 
activity with respect to the additive activity under specific 
thermodynamic constraints [2]. For any protein reaction, 
the additive-effect on the reaction equilibrium is then a 
function of the difference of the preferential interaction 
coefficients of the protein reactants and the protein 
products [11]. The interpretation of preferential 
interactions has been revised many times [2, 12, 13], and in 
a number of recent publications the preferential interaction 
parameter has been derived by means of statistical 
thermodynamic functions representing the additive-protein 
interactions on a molecular level [14-23].  
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Notwithstanding the theoretical advancements in the 
preferential interaction model, few attempts have been 
reported applying this model to understand the additive-
effect on protein processes [24, 25].  This discrepancy can 
be attributed to the laboriousness to experimentally 
determine the preferential interaction coefficient [26, 27] 
together with the practical challenge to measure the 
preferential interaction coefficients for both the reactants 
and products of the protein reaction at the same additive 
concentration.  As far as we know, the only successful 
attempt to circumvent this limitation was undertaken by 
Xie and Timasheff [24]. In this study, experimental 
determination of the preferential interaction with both the 
native and the denatured state was realized by varying a 
solution parameter which had no effect on preferential 
interaction.  The difference in preferential interaction could 
quantitatively explain the effect of urea on the unfolding-
equilibrium of RNAse A. The success of this attempt 
supports the assertion that additive-effects on protein 
reactions are the result of preferential additive-protein 
interactions. However, this experimental approach is 
demanding and restricted to this particular protein reaction. 
Baynes and Trout [28] demonstrated that the preferential 
interaction coefficient of an additive to a protein can be 
calculated from molecular dynamics simulations. In 
principle, their approach can be adopted for any protein for 
which the atomic structure is known.  

Our methodology makes use of this approach to 
calculate the glycerol effect on the binding affinity of the 
monoclonal antibody fragment Y32S Fv D1.3 (D1.3) with 
hen egg-white lysozyme (HEL). The antigen-antibody 
complex HEL-D1.3 was chosen since high resolution 
crystal structures are available for both the monomers and 
the complex [29].  Glycerol was selected as weakly 
interacting additive as it is one of the most frequently used 
additives in various biotechnological and biochemical 
processes [30-35]. Glycerol is also known as an osmolyte 
preventing cells against osmotic stress [36], and its in vivo 
application has been reported [37, 38]. Moreover, the 
properties of glycerol in aqueous solutions [39-41], and its 
effect on the native protein state have been studied [42-44].   

Based on a thermodynamic model for preferential 
interaction, an expression for the additive-effect on protein 
reactions is derived in Section II. This expression is then 
worked out in a format applicable to calculate the glycerol-
effect on HEL-D1.3 binding affinity.  Methods used for 
molecular dynamics simulations, the expression of D1.3 
mutants, and measurement of the binding affinity of the 
HEL-D1.3-complex are discussed in Section III. In Section 
IV, results for the D1.3-HEL binding affinity under 
varying glycerol concentrations calculated by our 
methodology will be compared with experimental results 
from literature [9]. In addition, we will predict the glycerol 
effect on the binding affinity of various D1.3-mutants and 
compare the results with the experimentally measured 
results. 

II. PREFERENTIAL INTERACTION MODEL 

A. Model derivation 
In this section, different interpretations pertinent to 

preferential interactions of additives with a protein in dilute 
aqueous protein solutions are evaluated and eventually a 
model equation is presented which is of direct use in our 
methodology.  Subscripts in the equations follow the 
Scatchard notation [45], where 1 stands for water, 2 for 
protein and 3 for additive. 

Several decades ago, Wyman [11] presented an equation 
that linked the additive activity a3 with the equilibrium 
constant of a protein reaction K2:  
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Where ν3 is the number of additive molecules bound to 

the protein product (P) and reactant (R).  
Whereas the Wyman linkage equation was originally 

derived for additives which tightly bind to specific 
locations on the protein surface, generalization followed 
soon for weakly binding additives by considering water 
molecules binding to the protein [12]: 
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Where ν1 is the number of water molecules bound to the 

protein, and m3 and m1 are the molality of additive and 
water, respectively.  

The term 
1

1

3
3 νν

m
m

−  was interpreted as the preferential 

interaction coefficient 23Γ of the additive with respect to 

the protein: 023 >Γ  implies 
1

3

1

3

m
m

>
ν
ν , indicating that the 

additive will be enriched near the protein surface with 
respect to the bulk solution. On the other hand 023 <Γ  
corresponds with additive depletion near the protein 
surface with respect to the bulk composition. For the 
derivation of     (2), both additive and water were 
assumed to bind to the protein surface with a specific 
equilibrium constant [12], an assumption which was also 
made by various other authors [46-48]. However, the idea 
of specific binding sites on the protein surface might be 
misleading since additive and water molecules dynamically 
move with respect to the protein surface due to random 
diffusion, with minor perturbations caused by the weak 
interactions with the protein surface [28]. Since molecular 
dynamics simulations allow the sampling of relative 
molecular positions in a 3-component system consisting of 



 
 

water, protein and additive, direct derivation of the 
macroscopic preferential interaction coefficient from 
molecular level insight is possible based on classical 
thermodynamics, combined with statistical 
thermodynamics.  

A rigorous thermodynamic definition for the preferential 
interaction coefficient was introduced by Casassa and 
Eisenberg [49]: 
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This preferential interaction coefficient corresponds with 

the number of additive molecules 3mδ required to keep the 

chemical potential of the additive μ3 constant upon 
addition of one protein molecule, and this under constant 
temperature T and pressure P.  

Using the Euler reciprocity rule and the Maxwell 
relation, it is seen that the preferential interaction 
coefficient is a measure for the change of chemical 
potential μ2 of the protein with respect to a change in 
chemical potential of the additive μ3: 
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Combining (4) with a thermodynamic box for a protein 

reaction at two different additive activities [2], an equation 
similar to the Wyman linkage equation      (2) is 
obtained: 
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Several recent publications have presented expressions 

of preferential interaction coefficients in 3-component 
systems based on statistical thermodynamics [14-23]. 
Although the expressions differ depending on the 
definition of the preferential interaction coefficient, they all 
make use of Kirkwood-Buff integrals [50]. KB-integrals 
are spatial integrals involving the pair correlation function: 
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Where αβG  is called the KB-integral and αβg   is the pair 

correlation function of molecule β with respect to molecule 
α.   

Smith [15] systematically derived different preferential 
interaction coefficients in function of KB-integrals in a 
straightforward way. Of direct interest for this work is the 
equation: 
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With c3 and c1 the concentration of additive and water, 
respectively. 

Combining (3) and (7) and taking the difference RP−Δ  
between the products P and the reactants R of the protein 
reaction, one gets: 
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Equation (2), (6) and (8) can be combined into: 
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Equation (9) shows that the additive effect on the protein 

reaction equilibrium constant can be calculated if the 
correlation functions of additive and water with respect to 
both protein reactants and protein products are known.  

B. Application for Model System 
Our methodology will be applied to calculate the 

glycerol-effect on the binding affinity K2 of D1.3 with 
HEL. For this purpose, (9) is reformulated for this specific 
model system as follows.  

With m
3γ the molal activity coefficient for the additive, 

(9) is equivalent to: 
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Taking into account the activity data of aqueous glycerol 

solution [39], (10) can be simplified with an error of less 
than 1% up to a 10 molal glycerol into the following 
equation:  
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Furthermore, with HEL-D1.3-complex as the protein 

reaction product and HEL and D1.3 the reactants, we get: 
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As seen in Fig. 1, the assumption that 
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is constant up to 10 molal glycerol, is consistent with the 
experimental data for three different protein association 
reactions. Consequently, the association constant at any 
glycerol molality m3 can be calculated as:   
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With Sc3 , S

23g  and, S
21g  the additive concentration, the 

additive-protein correlation function and the water-protein 
correlation function, at a specific additive molality Sm3 . 
 

III. METHODS  

A. Molecular Dynamics Simulations 
Under progress 

B. Expression of Fv D1.3 and Mutants in Yeast 
Planned 

C. Measurement of Binding Affinity 
Planned 

IV. RESULTS  

A. Validation of Methodology 

B. Prediction of Binding Affinity for D1.3 Mutants 
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Fig. 1.  The ratio K2/K2,m=0 in function of glycerol molality. K2 is the 
binding affinity in glycerol-water solutions, and K2,m=0 is the binding 
affinity in the absence of glycerol. The data for three different proteins 
binding to HEL are presented: Y32S Fv D1.3 [9], D44.1 [9], and HyHEL-
5 [51].  
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