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Abstract— We present a statistical mechanical approach for
quantifying thermodynamic properties of proteins in mixed sol-
vents. This approach, based on molecular dynamics simulations
which incorporate all atom models and the theory of preferen-
tial binding, allows us to compute transfer free energies with
experimental accuracy and does not incorporate any adjustable
parameters. Specifically, we applied our approach to the model
proteins RNase A and T1, and the solvent components water,
glycerol, and urea. We found that the observed differences
in the binding of glycerol and urea to RNase T1 and A are
predominantly a consequence of density differences in the first
coordination shell of the protein with the cosolvents, but the
second solvation shell also contributes to the overall binding
coefficients. The success of this approach in modeling preferential
binding indicates that it incorporates the important underlying
physics of proteins in mixed solvent systems and that the difficulty
in quantitative prediction to date can be surmounted by explicitly
incorporating the complex protein-solvent and solvent-solvent
interactions.

Index Terms— Glycerol, molecular dynamics, preferential
binding, ribonuclease, urea

I. I NTRODUCTION

Proteins are seldom solvated by pure water. Other solvent
components, such as buffer salts and stabilizers, are ubiquitous
in the laboratory and in formulations of therapeutic proteins.
Similarly, intracellular solutions are crowded with many types
of proteins, metabolites, nucleic acids, osmolytes, and other
molecules. The presence of these other components, hereafter
called “cosolvents,” generally alters protein equilibria and
reaction kinetics by perturbing the chemical potential of the
protein system. Cosolvents perturb the chemical potential of
the protein system by associating either more strongly or
more weakly with the protein than water. This phenomenon,
called “preferential binding” [1], is of great interest because
it governs the physical and chemical properties of proteins.

When a cosolvent (X) is added to an aqueous protein
solution, it alters the chemical potential of the protein (µP )
via the following relationship [2]:
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where ∆µtr
P is the transfer free energy of the protein from

pure water into the mixed solvent system,m is molality, and
subscriptsX andP identify the cosolvent and protein respec-
tively. Two partial derivatives appear in equation 2. The first
captures the dependence of the cosolvent chemical potential on
cosolvent molality and can be evaluated by experiments on a
binary mixture of cosolvent and water (mP → 0). The second
partial derivative is the “preferential binding coefficient,”ΓXP :

ΓXP ≡
(

∂mX

∂mP

)

µX

(3)

The preferential binding coefficient is a way in which binding
can be defined thermodynamically. It is also particularly useful
when binding is weak. The preferential binding coefficient is
a measure of the excess number of cosolvent molecules in the
domain of the protein per protein molecule (Figure 1). The
connection between the thermodynamic definition (equation 3)
and the intuitive notion of binding (local excess number of
molecules) comes from statistical mechanics, where it can be
shown that [3], [4]:

ΓXP =
〈

nII
X − nII

W
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X

nI
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)〉
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In the above equation,n denotes the number of a specific type
of molecule (subscriptX for the cosolvent and subscriptW
for water) in a certain domain (superscriptI for a bulk volume
outside of the vicinity of the protein and superscriptII for a
volume in the protein vicinity), and angle brackets denote an
ensemble average. Note thatΓXP is independent of the choice
of the boundary between the domains, as long as the boundary
is far enough from the protein.

If the cosolvent concentration is higher in the vicinity of
the protein than in the bulk,ΓXP is greater than zero, andµP

is lower in the presence of the cosolvent than in its absence.
Denaturants such as urea and guanidinium chloride exhibit
this type of binding behavior. The reverse is true for sugars,
such as trehalose. In trehalose solutions, there is generally a
deficiency of trehalose and an excess of water in the vicinity of
the protein. For this “preferential hydration” case,ΓXP is less
than zero, andµP is higher in the presence of the cosolvent.

Thirty years ago, Timasheff pioneered the use of high-
precision densitometry to measure preferential binding coef-
ficients for protein-cosolvent systems [2], [5], [6], [7]. More
recently, differential scanning calorimetry (DSC) [8] and vapor
pressure osmometry (VPO) [9] have been used to the same
end. Preferential binding coefficients are rigorous thermody-
namic quantities and are related to virial coefficients, activity
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Fig. 1. Physical interpretation of the preferential binding coefficient.
Interactions of solvent molecules with the protein at the protein-solvent
interface generally induce solvent concentration differences in the local (II)
and bulk (I) domains.ΓXP is the thermodynamic measure of the number
of cosolvent molecules bound to the protein, or in other words, the excess
number of cosolvent molecules in the vicinity of the protein versus the number
of cosolvent molecules in an equivalent volume of bulk solution.

coefficients, and free energies via standard thermodynamic
relations for multi-component solutions [10].

Experimental studies by the above methods have led to some
generalizations about preferential binding coefficients:

1) ΓXP may be positive or negative, indicating that in-
teractions of the protein and cosolvent are favorable or
unfavorable, respectively.

2) ΓXP is proportional to cosolvent molality at low con-
centration of cosolvent (often as high asmX ∼ 1 m and
higher) [9], [11], [12].

3) ΓXP is roughly proportional to the protein-solvent in-
terfacial area [2].

The second generalization above, together with the fact that
many binary mixtures of cosolvent and water (mP → 0) are
nearly ideal at low concentration of cosolvent, leads to a useful
simplification of equation 2:
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Equation 7 provides a simple and convenient link between
preferential binding coefficients and free energies. This rela-
tion leads to the useful rule that whenΓXP is proportional to
mX , for each cosolvent molecule that preferentially interacts
with the protein, the protein’s free energy is reduced by
approximately 0.6 kcal/mol at 25oC. The simplicity of this

relation is a natural result of the close relationship between
ΓXP and a second virial coefficient.

To be able to predict preferential binding coefficients and
understand their origins, the above thermodynamic framework
and general observations must be augmented by a mechanis-
tic model. Several such models have been presented in the
literature, including models based on the binding polynomial
or statistical mechanical partition function, solvent-cosolvent
exchange at defined sites, cosolvent partitioning between the
local and bulk domains, group contribution methods for esti-
mating transfer free energies.

The most general model of cosolvent binding hitherto pre-
sented comes from considering an equilibrium of all possible
protein-cosolvent complexes, from which it can be shown that
[13]:
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where Kij is the equilibrium constant for a reaction of a
protein molecule,i molecules of water, andj molecules of
cosolvent into a complex. While this model is completely
general, its utility is limited because it is not possible to
determine experimentally the manyKij parameters present
in equation 8.

Schellman’ssite exchange model[4] provides a way to
simplify this general expression to a form containing a single
parameter. This model treats binding as a family of protein-
solvent exchange reactions such as:

P ·Wi + X → P ·X + iW (9)

where P is the protein,W is water, X is cosolvent, and
i is the exchange stoichiometry. The simplification requires
the assumptions that 1:1 exchange reactions (i = 1) occur
on a fixed number of identical, independent sites and that
the sites are far from saturation with cosolvent (i.e. the
apparent dissociation equilibrium constant for each site is well
above the cosolvent concentration). The number of sites,n, is
approximated by the number of water molecules present in
a monolayer around the protein. These simplifications reduce
equation 8 to:

∆µtr
P = −nRT 〈K〉mX (10)

where〈K〉 is the average equilibrium constant of binding at a
single site. The single parameter〈K〉 can then be determined
from an experimental measurement ofΓXP . When equation 7
holds, the relation between〈K〉 andΓXP is simply:

〈K〉 = ΓXP /n mX (11)

Values of 〈K〉 for different proteins in this linear regime
are roughly equal [14].〈K〉 cannot, however, be determined
without knowledge ofΓXP or other free energy data on the
particular cosolvent system of interest. In fact, one can say
that 〈K〉 is defined byΓXP .

Another model that recasts preferential binding coefficient
data in terms of a single model parameter is thelocal-bulk
domain modeldeveloped by Courtenay et al [9]. The parameter
in this model is the partition coefficientKP , relating the



number of water molecules and cosolvent molecules in the
local and bulk domains via:

KP =
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X /nII
W
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W

(12)

Similar to the site exchange model, the convention used in this
model is that the local domain consists of a monolayer of water
and enough cosolvent to obtain the experimentally observed
ΓXP . Note that because the absolute occupancy of water and
cosolvent in the local domain cannot be easily determined by
experiment, the local-bulk domain model effectively defines
nII

W . Like 〈K〉, values ofKP can be used to predictΓXP

at other cosolvent concentrations or for other proteins in the
same cosolvent, but predictions cannot be made in the absence
of ΓXP or free energy data on the same cosolvent system.

Lastly, transfer free energy models, pioneered by Bolen’s
group [15], take a different approach. These models concep-
tually divide whole proteins into groups [16] such as the
amino acid side chains and the protein backbone and model
the transfer free energy of the whole protein as a sum of the
transfer free energy of the groups it comprises, via:

∆µtr
P =

∑

i

αi∆gtr
i (13)

where ∆gtr
i is the transfer free energy of the model group

and αi is the solvent accessible area of the group in the
whole protein, normalized to the solvent accessible area of
the model compound. The overall∆µtr

P can then be predicted
for any system of known structure. In the context of the
previously described models, the transfer free energy model
can be thought of as a linearized binding model where each
surface group or amino acid in the protein represents a
different type of independent binding site, and the binding
constants for those sites are determined by experiments on
model compounds, such as free amino acids or cyclic di-
amino acid compounds. Predictions made by transfer free
energy models have met with mixed success. A linear group
contribution model (equation 13) may be too simple to capture
all of the important contributions to∆µtr

P [17].

While the above models have helped in the understanding
of the phenomenon of preferential binding, they generally
incorporate strong assumptions, and they necessitate the use
of experimental data on highly analogous systems in order
to determine model parameters and make predictions. Thus,
their uses as predictive tools and as tools to gain insight into
specific systems are limited.

In this work, we developed a predictive, molecular-level
approach for the study of preferential binding based on all-
atom, statistical mechanical models that use no adjustable pa-
rameters. To date, statistical mechanical models of preferential
binding have only been developed for interactions of ions
with charged cylinders [18], [19] and for interactions of two-
dimensional, “hard circles” with a linear interface [20], both
far too simple to be generally applied to protein-cosolvent sys-
tems. Other explicit mixed solvent simulations of proteins and
amino acids have been performed [21], [22], [23], [24], [25],
but these studies did not compute thermodynamic quantities

Fig. 2. A simulation cell containing RNase T1 (center, green spheres)
solvated by water (thin blue lines) and urea (red spheres). Figure generated
with VMD [28].

related to preferential binding. In our approach, we define
the number of “bound” molecules in a thermodynamically
consistent way and do nota priori incorporate any informa-
tion about “binding sites.” The use of our approach for the
computation of preferential binding coefficients was validated
in two systems by comparison with experimental data from
the literature. Additionally, the molecular-level detail of the
approach provides new insights into the following issues:

1) The changes in solvent and cosolvent concentration as
a function of distance from the protein surface.

2) A precise definition of the “local domain” (Figure 1).
3) The differences in preferential binding or apparent bind-

ing equilibrium constant at different locations on the
protein-solvent interface.

The success of this method in modeling preferential binding
indicates that it captures the important underlying physics
of protein-cosolvent-water systems and that the difficulty in
quantitative prediction to date can be surmounted by explicitly
incorporating the complex protein-solvent and solvent-solvent
interactions.

A. A New, Molecular-Level Approach to Computing Preferen-
tial Binding

Our approach uses explicit atomic interaction potentials
(force fields), such as Lennard-Jones, Coulombic, spring,
and torsion interactions, with pre-fit coefficients [26], [27].
Thermodynamic properties, such as preferential binding co-
efficients, are computed by averaging in the time domain
via molecular dynamics (MD). A snapshot from a dynamic
simulation of RNase T1 in a urea solution is shown in Figure 2.
The results of such simulations contain all of the information
needed to extract thermodynamic properties such asΓXP .

Molecular dynamics uses Newton’s second law of motion,
that acceleration is the quotient of force and mass, to compute
the positions of each atom in the system as a function of time.



To do this, an energy model, sometimes called a “force field,”
that can be used to compute the net force on any atom in any
configuration is employed.

During the MD run, the positions of each atom are recorded
at fixed intervals in time. These “snapshots” form an ensemble
of configurations which can then be used to compute thermo-
dynamic properties, such asΓXP .

Importantly, this method of computingΓXP does not intro-
duce any adjustable parameters to model preferential binding
or any other aspect of a system containing a protein and two
solvent components. All of parameters required by the MD
method for energy computations are determined independently
of this particular modeling objective, and in fact have been
shown to be generally applicable to biological systems [29].
Thus, the method developed here could be used to estimate
ΓXP and ∆µtr

P in systems where no experimental data is
available. It therefore facilitates the study of preferential
binding when direct experimental study is difficult, such as
at transition state configurations or at marginally stable states
of proteins. Furthermore, it yields detailed, local, molecular-
level insight into the system studied.

Another benefit of this approach is that when equation 7
holds (such as for urea and glycerol), the protein transfer
free energy (∆µtr

P ) can be calculated from a singleΓXP

simulation. Traditional free energy calculation methods such
as thermodynamic integration [30], [31] require 15-20 trajec-
tories, which is computationally difficult for protein systems
of this size.

B. Minimum Simulation Time

Sufficient sampling of position-space configurations in time
is required for the accurate calculation ofΓXP via equation 3.
Assuming that the average protein solution structure is close to
that of the initial (crystal) structure and that water molecules
sample position space rapidly because of their high density,
the most important time scale to be captured is that of the
cosolvents sampling position space. One way to estimate this
time is that it must be much larger than the average time
between cosolvent-cosolvent contacts.

An estimate of the time between contacts can be obtained
as:

tcontact ≈ 1
12D

(
Vsolv

nX

) 2
3

(14)

where D is the cosolvent diffusivity,Vsolv is the solvent
volume, andnX is the number of cosolvent molecules. For
the simulations performed here, the solvent is mostly water,
so equation 14 can be further simplified to yield:

tcontact ≈ 1
12D

(
1

NAρW mX

) 2
3

(15)

where NA is Avogadro’s number andρW is the density of
water in kg/m3. For a 1m cosolvent in water system with a
cosolvent diffusivity of 2x10−9 m2/s (a lower bound on the
diffusivities of the cosolvents studied here),tcontact is about
30ps. Thus, nanosecond trajectories will be required for good
sampling of cosolvent position space. Importantly, this time
increases as the cosolvent concentration decreases, implying

that there is a minimum concentration that can be studied with
any given amount of computational resources.

II. M ETHODOLOGY

A. Molecular Simulations

Molecular dynamics was used to sample the phase space
of proteins solvated by water and a cosolvent. Version 28 of
the CHARMM [26] molecular dynamics package was used
for all simulations. The CHARMM force-field was used for
the protein, and the TIP3P model [32] was used for water.
A force-field was constructed for glycerol using the standard
CHARMM geometries and partial charges for the atoms in
a -CHOH- unit [26], [27]. Urea was assumed to be planar
with bond lengths equal to the CHARMM standards and
partial charges recomputed as done previously [33] but using
the CHARMM van der Waals mixing rules in the objective
function.

The structures of RNase A (PDB code: 1fs3) and RNase
T1 (PDB code: 1ygw) were obtained from the Protein Data
Bank [34]. In total, three simulations were performed: RNase
A in 1m glycerol (pH 3), RNase T1 in 1m glycerol (pH 7),
and RNase T1 in 1m urea (pH 7). Details of each simulation
are shown in Table I. Each protein was solvated in a trucated
octahedral box extending a minimum of 9Å from the protein.
The pH of each simulation was fixed by setting the protonation
states of each ionizable side chain to the dominant form
expected for each amino acid at the pH of interest. Arginine,
cysteine, lysine, and tyrosine were protonated in all of the
simulations. Aspartate, glutamate, and histidine were assumed
to have pKa values of 3.4, 4.1, and 6.6 [35], [36], respectively,
and were therefore protonated in the simulation at pH 3 and
deprotonated at pH 7. Initial placement of water and cosolvent
molecules were random. Protein counterions were placed using
SOLVATE 1.0. The system was first energy minimized at 0K,
next heated to 298.15K, and then equilibrated for 1ns in the
NTP ensemble at one atmosphere. For the computation of the
properties of interest, two nanoseconds of dynamics were then
run, during which statistics were computed from snapshots of
the trajectory every picosecond.

B. Calculation of Preferential Binding Coefficients

The trajectories were then used to define the local and bulk
regions and computeΓXP in the following manner. For the
purpose of computingΓXP and other thermodynamic and
structural parameters, each water and cosolvent molecule was
treated as a point at its center of mass. The distance of each
of these points to the protein’s van der Waals surface was
computed, and thenρW (r) andρX(r), defined as the number
densities of these points at a distancer from the protein,
were computed. In all cases, theρ(r) functions exhibited
peaks and valleys characteristic of solvation shells in the
range 0 < r < 6Å. At distances in the range of 6-8Å
and higher, such variations are no longer seen, and the local
number density is defined as bulk number density,ρ(∞). Such
a region far from the protein containing a spatially uniform
concentration of water and cosolvent must be present in the



Cosolvent Protein T (oC) pH nX nW <l> (Å)
Urea RNase T1 25 7 90 4274 57.48

Glycerol RNase T1 25 7 87 4582 59.24
Glycerol RNase A 25 3 90 5480 62.86

TABLE I

DETAILS OF FOUR MOLECULAR DYNAMICS (MD) SIMULATIONS PERFORMED. nX IS THE NUMBER OF COSOLVENT MOLECULES; nW IS THE NUMBER OF

WATER MOLECULES; AND <l> IS THE AVERAGE DIMENSION OF THE PRIMARY UNIT CELL(WHICH VARIES DURING THE RUN AT CONSTANT PRESSURE).

simulation cell in order to define the local and bulk regions
and calculateΓXP .

The position of the boundary between the local and bulk
domains, a distance ofr∗ away from the surface of the protein,
was then determined by choosing the minimum distance at
which no significant difference betweenρ(r∗) andρ(∞) was
apparent for either water or cosolvent. All solvent molecules
whose centers of mass fell inside a distance ofr∗ from the
protein’s van der Waals surface were defined as belonging
to the local domain (II), and all other solvent molecules
were defined as belonging to the bulk domain (I). With
these definitions of the domains, the instantaneous preferential
binding coefficient,ΓXP (t), was computed as

ΓXP (t) ≡ nII
X − nI

X

(
nII

W

nI
W

)
(16)

for each time point in each trajectory. The preferential binding
coefficient,ΓXP , was then computed for each trajectory as the
time average of these instantaneous values:

ΓXP =
1
t

∫ t

0

ΓXP (t′)dt′ (17)

The radial distribution functionsgX(r) and gW (r) are
defined as:

gi(r) ≡ ρi(r)/ρi(∞) (18)

where i represents water (W ) or a cosolvent (X) species.
These functions provide another route to computeΓXP :

ΓXP = 〈nII
X 〉 −

〈(
nI

X

nI
W

)
nII

W

〉

= ρX(∞)
∫

gX dV −
(

ρX(∞)
ρW (∞)

)
ρW (∞)

∫
gW dV

= ρX(∞)
∫

(gX − gW ) dV (19)

where each integral is over the local domain or the entire
system (sincegX − gW = 0 in the bulk domain).

The boundary between domains I and II must be placed far
enough from the protein to ensure that it is in the bulk, yet
at the smallest such distance so that statistical fluctuations in
the number of molecules in the domains can be minimized.
We can use the values ofgX(r) andgW (r) to determine the
optimal boundary. DefiningΓ∗XP as the apparent preferential
binding coefficient resulting from defining the local domain as
those molecules whose centers of mass lie inside a distance
r∗ from the protein:

Γ∗XP (r∗) = ρX(∞)
∫ r∗

0

(gX − gW )
dV

dr
dr (20)

The error inΓXP , EΓ, introduced by selecting a particular
value ofr∗ is then

EΓ = Γ∗XP (r∗)− ΓXP (21)

= −ρX(∞)
∫ ∞

r∗
(gX − gW )

dV

dr
dr (22)

When r∗ is selected properly, the surface defined byr = r∗
is entirely in the bulk solution,gX(r∗) = gW (r∗) = 1, and
EΓ = 0. Thus, selectingr∗ as the minimum distance for which
all r ≥ r∗ satisfygX(r) = gW (r) = 1 (within the error of the
simulation) is optimal.

C. Estimation of Statistical Error

The statistical error arising from computing averaged prop-
erties from a finite trajectory was estimated in the following
fashion:

1) The dynamic trajectory of interest was divided inton
pieces.

2) The mean of the property of interest was computed in
each piece. These means were designatedxi wherei =
1..n.

3) The standard deviation of thexi values was computed.
4) This standard deviation was divided by

√
n and the

quotient was designatedσm, an estimate of the error
in the mean determined by time averaging the full
trajectory.

The number of piecesn into which the trajectory is divided
must be small enough to ensure that the means of each
piece (thexi) are statistically independent. An autocorrelation
analysis (not shown) of several trajectories ofΓXP (t) data
and the underlying molecular counts (nI

i and nII
i ) indicates

that a window of about 0.2ns is sufficiently large for this to
be true. Therefore, for a 2ns dynamics trajectory, a value of
n = 2/0.2 = 10 was used.

For long trajectories, the statistical errorσm is roughly
proportional to the inverse square root of the trajectory length.
This property can be used to estimate the trajectory length
required to achieve a given level of statistical accuracy after a
small trajectory has been generated and analyzed.

III. R ESULTS AND DISCUSSION

A. Radial Distribution Functions of Water and Cosolvents

The radial distribution functions of water, urea, and glycerol
were computed for all three simulations as described in
Methodology and are shown in Figure 3.

At very short distances,r < 0.6Å for water andr < 1.0Å
for glycerol and urea, regions of total solvent and cosolvent
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Fig. 3. Radial distribution functions of water, urea, and glycerol are shown
for simulations of RNase T1 in glycerol and urea solutions (left) and RNase
A in a glycerol solution (right). In the left-hand figure, the difference between
the twogW (r) functions is not visible at this scale.

exclusion due to very strong van der Waals repulsion can be
seen. The size of these “totally excluded” regions is much
smaller than one would expect based on the apparent van
der Waals radii of the solvent and cosolvent molecules alone
(for example,r ≈ 1.5Å for water and 2.2̊A for urea [37]),
indicating that electrostatic attractive forces play an important
role in solvation even at these distances. After the regions
of total exclusion, strong first coordination shells of these
three molecules can be clearly seen. The peaks of the first
coordination shells become more distant from the protein
as the size of the molecules they correspond to increases.
Significantly smaller second coordination shell peaks are also
visible for urea solvating RNase T1 and glycerol solvating
RNase A. At distances greater than 6-7Å from the protein,
solvation shells cannot be discerned, and the number densities
of water, urea, and glycerol reach their bulk values.

In the simulations of RNase T1 in glycerol and urea
solutions, the radial distribution functions for glycerol and urea
are quite different. The maximum value ofgX(r) for urea is
over 4.5, while that for glycerol is about 2.5. The difference
in these maximum values, while significant, is not sufficient
to say that the number of urea molecules coordinated to the
protein (nII

X ) is higher than the number of glycerol molecules
coordinated; this can only be done by integrating eachgX(r)
function appropriately via equation 19.

The radial distribution functions for both water and glycerol
are similar in the simulations of RNase A and RNase T1 in
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Fig. 4. Apparent preferential binding coefficient as a function of the cutoff
distance between the local and bulk domains for simulations of RNase T1 in
glycerol and urea solution.

glycerol solution, despite the fact that the proteins and the pHs
of the solutions are different. Given that the proteins are of
similar size, this observation is consistent with the fact that
the values ofΓXP for the two solutions are close.

B. Preferential Binding Coefficients

The radial distribution functions in Figure 3 suggest thatr∗
in the range of 6-8̊A is an appropriate choice of boundary
between the local and bulk domains. The error inΓXP

introduced by a particular choice of the boundary distance,r∗,
can be estimated by plotting the apparent preferential binding
coefficient (Γ∗XP ) versusr∗ (Figure 4). Γ∗XP depends very
strongly onr∗ in the first solvation shell (r = 0 − 4Å) and
weakly onr∗ in the second solvation shell (r = 4 − 6Å). In
the ranger = 6− 8Å, the dependence ofΓ∗XP on r∗ is small
(±0.5), and is less than the statistical error inΓXP (shown in
Table II, explained below). Therefore, a cutoff distance of 6Å,
or about two solvation shells, is sufficiently large to minimize
systematic error inΓXP caused by the choice ofr∗. If only
a single solvation shell were considered (r∗ ∼ 3.5 − 4Å), a
systematic error inΓXP of approximately 0.5 - 1 molecules
would be introduced as a result of neglect of the second
solvation shell.

The preferential binding coefficient,ΓXP , was computed
via equation 3 usingr∗ = 6Å as the boundary between the lo-
cal and bulk domains. A confidence interval for this ensemble
average was computed as described in Methodology. The bind-
ing coefficients and their statistical uncertainties are shown in
Table II. Experimental values from the literature were available
for two out of three of these protein-cosolvent systems, and
our computed values ofΓXP agree quite favorably with these.
The fact that this occurs for both positive and negative values
of ΓXP without the use of any adjustable parameters is
very encouraging. For a cosolvent that obeys equation 7, the
confidence intervals of±1.0 in ΓXP represents a confidence
limit in the transfer free energy of about 0.6 kcal/mol, which
is a typical value for free energies calculated via this type of
molecular simulation. Achievement of this level of accuracy
despite the fact that structural fluctuations in the native state
ensemble of proteins have been observed on much longer time
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Fig. 5. ΓXP (t) probability density function. A wide range of values of
ΓXP (t) are sampled as water and cosolvent molecules diffuse between the
local and bulk domains.

scales [38] than the time scale of the simulations performed
here suggests that solvent dynamics are more important than
protein structural dynamics in determiningΓXP .

ΓXP (t) probability density functions for the simulations of
RNase T1 in urea and glycerol solution are shown in Figure 5.
The range of instantaneous values of the preferential binding
coefficient, ΓXP (t), is quite large relative to the absolute
values ofΓXP . ΓXP (t) values in excess ofΓXP ± 15 are
observed. The breadths of these distributions are related to
the size of the interface between the local and bulk domains
and indicate the importance of sampling a large number of
solvent configurations to obtain the macroscopic, averaged
ΓXP (equation 17).

C. The Relation between Solvent Accessible Area and the
Number of Molecules in the Local Domain

The solvent accessible areas of whole proteins (SAA) and
constituent groups (SAAi) in crystal structures have been used
extensively in analyzing proteins. SAA and SAAi are essen-
tially simple ways of measuring water coordination numbers.
In models developed to date, SAA or SAAi has been used
to estimatenII

W or nII
W,i by assuming that the local domain

is a monolayer of water and each water molecule occupies
approximately 10̊A2 of the solvent accessible area. Since
we have introduced a new notion of the local domain, it
is worthwhile to see what relationships exist between SAAi

and the coordination numbersnII
W,i and nII

X,i that utilize this
definition.

A scatter plot of the solvent accessible area of a set of
constituent groups (amino acid side chains and the protein
backbone) versus the number of water molecules in the
local domain for three different simulations is shown in
Figure 6. Solvent accessible area was calculated analytically
in CHARMM (based on Richmond’s method [40]) using a
1.4Å probe. There is a strong, linear correlation of these vari-
ables with slope 4.2̊A2/molecule and correlation coefficient
0.96. Similarly strong correlations are seen for SAAi with
nII

X,i in individual simulations. A summary of proportionality
constants and correlation coefficients for these relationships
is shown in Table III. If the time average SAAi from each
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Fig. 6. Correlation of solvent accessible area and the number of water
molecules in the local domain of constituent groups. Each point represents
a constituent group of either a type of amino acid side chain or the protein
backbone in one of the three simulations shown in Table II. The solvent
accessible area of a constituent group and the number of water molecules in
the local domain of the solvent near the group (nII

W,i) are highly correlated.

dynamics simulation is used instead of the crystal structure
SAAi values, the correlation coefficients increase slightly.
Because the time average solvent accessible areas are higher
than those in the crystal structure, the proportionality constants
shown in Table III also increase.

IV. CONCLUSIONS

A quantitative method based on molecular dynamics sim-
ulations using all atom potential models has been developed
and validated for calculating preferential binding coefficients.
Our method is not a derivative of thermodynamic integration
or thermodynamic perturbation methods and requires only a
single trajectory to compute the transfer free energy of a
protein into a weak-binding cosolvent system. Our results
match experimental data well for glycerol and urea solutions,
covering a range of positive and negative binding behavior.
This work also augments experimentally-observable, macro-
scopic thermodynamics with the mechanistic insight provided
by a molecular-level, statistical mechanical model.

Variations in the radial distribution functions with distance
for each cosolvent are evident up to about 6Å, or two solvation
shells of water, away from the protein. Glycerol is not totally
excluded from close contact with the protein, but glycerol is
less likely than urea to be found in such a position. The radial
distribution functions of water and cosolvents are sufficient to
calculate preferential binding coefficients by integrating over
a suitable solvent volume.
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