Polymer self-adhesion due to the interdiffusion of macromolecules has been an
active area of research for several decades [70, 43, 62, 42, 72, 73, 41]. Here,
we report a new phenomenon of sub-Tg, solid-state, plasticity-induced bonding;
where amorphous polymeric films were bonded together in a period of time on the
order of a second in the solid-state at ambient temperatures nearly 60 K below
their glass transition temperature (Tg) by subjecting them to active plastic
deformation. Despite the glassy regime, the bulk plastic deformation triggered
the requisite molecular mobility of the polymer chains, causing
interpenetration across the interfaces held in contact. Quantitative levels of
adhesion and the morphologies of the fractured interfaces validated the sub-Tg,
plasticity-induced, molecular mobilization causing bonding. No-bonding outcomes
(i) during the compression of films in a near hydrostatic setting (which
inhibited plastic flow) and (ii) between an 'elastic' and a 'plastic' film
further established the explicit role of plastic deformation in this newly
reported sub-Tg solid-state bonding