65 research outputs found

    Screening of point charges in Si quantum dots

    Full text link
    The screening of point charges in hydrogenated Si quantum dots ranging in diameter from 10 A to 26 A has been studied using first-principles density-functional methods. We find that the main contribution to the screening function originates from the electrostatic field set up by the polarization charges at the surface of the nanocrystals. This contribution is well described by a classical electrostatics model of dielectric screening

    Radiative recombination of charged excitons and multiexcitons in CdSe quantum dots

    Full text link
    We report semi-empirical pseudopotential calculations of emission spectra of charged excitons and biexcitons in CdSe nanocrystals. We find that the main emission peak of charged multiexcitons - originating from the recombination of an electron in an s-like state with a hole in an s-like state - is blue shifted with respect to the neutral mono exciton. In the case of the negatively charged biexciton, we observe additional emission peaks of lower intensity at higher energy, which we attribute to the recombination of an electron in a p state with a hole in a p state

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques

    Get PDF
    The structure of CoCrFeyNi (y = 0, 0.8 and 1.2) and CoCrFeNi-Pdx (x = 0.0, 0.5, 0.8, 1.0, 1.2 and 1.5) High Entropy Alloys has been investigated by neutron and standard X-ray as well as by high-energy X-ray diffraction techniques. The alloys were produced by arc melting and afterwards heat treated under several different conditions. It has been concluded that the CoCrFeNi alloy in as-cast condition is, contrary to what is claimed in the literature, not single-phase but consists of at least two different phases, both of fcc type. The difference in lattice constant between the two phases is close to 0.001 Å. Diffraction patterns measured by X-ray and neutron diffraction have shown that the structure of the alloy is not affected by 3 h heat treatment up to 1100 °C. Changing the amount of Fe has no drastic effect on alloy structure. The Pd-containing alloys have also all been found not to be single-phase but to consist of at least four different phases, all being of fcc type. The lattice constants for all phases increase with Pd content. The relative amounts of the different phases depend on Pd concentration. Furthermore, heat treatments of 3 h duration at different temperatures have a significant effect on the alloy phase composition. It is suggested that HEAs should be considered as multicomponent alloys presenting “simple” diffraction patterns, e.g. consisting of one or several lattices of fcc, hcp or bcc type with very close lattice parameters

    On the weak solutions of the forward problem in EEG

    No full text
    The process underlying the generation of the EEG signals can be described as a set of current sources within the brain. The potential distribution produced by these sources can be measured on the scalp and inside the brain by means of an EEG recorder. There is a well-known mathematical model that relates the electric potential in the head with the intracerebral sources. In this work, we study and prove some properties of the solutions of the model for known sources. In particular, we study the error in the potential, introduced by considering an approximated shape of the head

    Predicting phase behavior in high entropy and chemically complex alloys

    No full text
    The interest in high entropy alloys and other metallic compounds with four or more elements at near-equiatomic ratios has drawn attention to the ability to rapidly predict phase behavior of these complex materials, particularly where existing thermodynamic data are lacking. This paper discusses aspects of this from the point of view of predicting without utilizing (or fitting) experimental data. Of particular interest are heuristic approaches that provide prediction of single-phase compositions, more rigorous approaches that tackle the thermodynamics from a more fundamental point of view, and simulation approaches that provide further insight into the behaviors. This paper covers cases of all three of these, in order to examine the strengths and weaknesses of each approach, and to indicate directions where these may be utilized and improved upon. Of particular interest is moving beyond “which composition may form a solid solution,” to recognizing the importance of underlying thermodynamic realities that affect the temperature- and composition-dependent transformations of these materials.</p

    Predicting phase behavior in high entropy and chemically complex alloys

    Get PDF
    The interest in high entropy alloys and other metallic compounds with four or more elements at near-equiatomic ratios has drawn attention to the ability to rapidly predict phase behavior of these complex materials, particularly where existing thermodynamic data are lacking. This paper discusses aspects of this from the point of view of predicting without utilizing (or fitting) experimental data. Of particular interest are heuristic approaches that provide prediction of single-phase compositions, more rigorous approaches that tackle the thermodynamics from a more fundamental point of view, and simulation approaches that provide further insight into the behaviors. This paper covers cases of all three of these, in order to examine the strengths and weaknesses of each approach, and to indicate directions where these may be utilized and improved upon. Of particular interest is moving beyond “which composition may form a solid solution,” to recognizing the importance of underlying thermodynamic realities that affect the temperature- and composition-dependent transformations of these materials

    Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys

    No full text
    High-entropy alloys constitute a new class of materials whose very existence poses fundamental questions regarding the physical principles underlying their unusual phase stability. Originally thought to be stabilized by the large entropy of mixing associated with their large number of components (five or more), these alloys have attracted attention for their potential applications. Yet, no model capable of robustly predicting which combinations of elements will form a single phase currently exists. Here, we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, predicts specific combinations of elements most likely to form single-phase, high-entropy alloys. The model correctly identifies all known single-phase alloys while rejecting similar elemental combinations that are known to form an alloy comprising multiple phases. In addition, we predict numerous potential single-phase alloy compositions and provide three tables with the ten most likely five-, six-, and seven-component single-phase alloys to guide experimental searches
    • …
    corecore