8 research outputs found

    Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones

    Get PDF
    Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections

    New 8-nitroquinolinone derivative displaying submicromolar in vitro activities against both Trypanosoma brucei and cruzi

    Get PDF
    International audienceAn antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≀ EC50 ≀ 13 ÎŒM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = −0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds

    Analogues polymériques de peptides antimicrobiens à potentiel thérapeutique anti-Clostridioides difficile

    No full text
    Clostridioides difficile (C. difficile) is a spore-forming, strict anaerobic Gram-positive bacillus that often develops in the gut of patients whose intestinal microbiota is destabilized by broad-spectrum antibiotherapy. Currently, C. difficile infection (CDI) is one of the leading causes of healthcare-associated infections, also known as nosocomial infections. Anti-C. difficile antibiotic therapy is mainly based on three molecules that offer contrasting results and in recent years, CDI has become more frequent, more severe and more often recurrent. In 2020, the WHO classified C. difficile as a microorganism posing an urgent threat and a significant risk to human health. Antimicrobial peptides (AMP) are biomolecules constituted of amino acids produced by microorganisms that target viruses, bacteria, fungi and parasites. The effectiveness of AMP is due to their ability to destabilize membranes, a physicochemical property linked to their amphiphilic character. To date, the industrial development of AMP is limited by their high production cost and their sensitivity to peptidases, which prevents their oral administration. Polymeric analogues as simplified mimetics of AMP have been proposed to tackle these constraints and amino acid polymers are certainly very suitable supports to approach AMP. In this thesis, we present the preparation of new amphiphilic copolymers obtained by ring-opening polymerization (ROP) of N-methylated-N-carboxyanhydrides (NNCA) monomers. These NNCA monomers were obtained from bio-sourced amino acids with a "hydrophobic" (L-Alanine; D-Alanine; L-Leucine and L-Phenylalanine) side chain or "cationic" side chain at physiological pH (L-Lysine) in two steps: 1) synthesis of N-Boc-N-methylated intermediates in 2 steps and 2) cyclization into NNCA by the Leuchs method. This methodology allowed to prepare 4 "hydrophobic" NNCA monomers and 1 "cationic" monomer. Then, we analyzed the polymerization kinetics of some NNCA by preparing homopolymers and then we implemented copolymerization reactions by mixing the "hydrophobic" and "cationic" NNCA. In the same time, we determined the minimum inhibitory concentrations (MIC) towards C. difficile of a library of copolypeptoids, by studying the influence of structural parameters such as hydrophobicity, the nature of the side chain, the nature of the initiator and the degree of polymerization, and were able to identify polymers that were as active as two reference molecules and not significantly cytotoxic towards the epithelial line Caco-2.Clostridioides difficile (C. difficile) est un bacille Ă  Gram positif, anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. L'infection Ă  C. difficile (ICD) est la principale consĂ©quence de la colonisation du tube digestif par une souche toxinogĂšne de C. difficile. Aujourd'hui, C. difficile fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es, les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et le risque de rĂ©cidives Ă  trĂšs largement augmentĂ©. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ©. Ainsi, des projets de recherche sur de nouvelles molĂ©cules prĂ©sentant des mĂ©canismes d'action innovants doivent ĂȘtre dĂ©veloppĂ©s afin de lutter contre C. difficile. Clostridioides difficile (C. difficile) est un bacille Gram positif anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. Aujourd'hui, l'infection Ă  C. difficile (ICD) fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es : les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et rĂ©cidivent souvent. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ© humaine. Les peptides antimicrobiens (PAM) sont des biomolĂ©cules constituĂ©es d'acides aminĂ©s notamment produites par certains micro-organismes et ciblant virus, bactĂ©ries, fungi et parasites. L'efficacitĂ© des PAM s'explique par leur capacitĂ© Ă  dĂ©stabiliser les membranes, une propriĂ©tĂ© physicochimique liĂ©e Ă  leur caractĂšre amphiphile. A ce jour, le dĂ©veloppement industriel des PAM reste assez limitĂ© Ă  cause de leur cout de production Ă©levĂ© et de leur sensibilitĂ© aux peptidases, empĂȘchant leur administration par voie orale. Des analogues polymĂ©riques comme mimes simplifiĂ©s des PAM ont Ă©tĂ© proposĂ©s pour tenter de lever ces contraintes et les polymĂšres d'acides aminĂ©s sont certainement de trĂšs bons supports pour se rapprocher des PAM. Cette thĂšse prĂ©sente la prĂ©paration de nouveaux copolymĂšres amphiphiles obtenus par polymĂ©risation par ouverture de cycle (ROP) de monomĂšres de type N-carboxyanhydrides-N-mĂ©thylĂ©s (NNCA). Ces monomĂšres NNCA ont Ă©tĂ© obtenus Ă  partir d'acides aminĂ©s issus de la biomasse possĂ©dant une chaine latĂ©rale "hydrophobe" (L-Alanine ; D-Alanine ; L-Leucine et L-PhĂ©nylalanine) ou "cationique" Ă  pH physiologique (L-Lysine) en deux temps : 1) la synthĂšse d'intermĂ©diaires N-Boc-N-mĂ©thylĂ©s en 2 Ă©tapes puis 2) cyclisation en NNCA par la mĂ©thode de Leuchs. Cette mĂ©thodologie a permis de prĂ©parer 4 monomĂšres NNCA "hydrophobes" et 1 monomĂšre "cationique". Ensuite, nous avons analysĂ© les cinĂ©tiques de polymĂ©risation de certains NNCA en prĂ©parant des homopolymĂšres puis nous avons mis en Ɠuvre des rĂ©actions de copolymĂ©risation en mĂ©langeant les NNCA "hydrophobes" et "cationiques". En parallĂšle, nous avons dĂ©terminĂ© les concentrations minimales inhibitrices (CMI) vis-Ă -vis de C. difficile d'une bibliothĂšque de copolypeptoĂŻdes, en Ă©tudiant l'influence de paramĂštres structuraux tels que l'hydrophobicitĂ©, la nature de la chaine latĂ©rale, la nature de l'amorceur et le degrĂ© de polymĂ©risation et avons pu identifier plusieurs polymĂšres aussi actifs que deux molĂ©cules de rĂ©fĂ©rence et peu cytotoxiques vis-Ă -vis de la lignĂ©e Ă©pithĂ©liale Caco-2

    Polymeric analogues of antimicrobial peptides with therapeutic potential against clostridium difficile

    No full text
    Clostridioides difficile (C. difficile) est un bacille Ă  Gram positif, anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. L'infection Ă  C. difficile (ICD) est la principale consĂ©quence de la colonisation du tube digestif par une souche toxinogĂšne de C. difficile. Aujourd'hui, C. difficile fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es, les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et le risque de rĂ©cidives Ă  trĂšs largement augmentĂ©. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ©. Ainsi, des projets de recherche sur de nouvelles molĂ©cules prĂ©sentant des mĂ©canismes d'action innovants doivent ĂȘtre dĂ©veloppĂ©s afin de lutter contre C. difficile. Clostridioides difficile (C. difficile) est un bacille Gram positif anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. Aujourd'hui, l'infection Ă  C. difficile (ICD) fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es : les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et rĂ©cidivent souvent. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ© humaine. Les peptides antimicrobiens (PAM) sont des biomolĂ©cules constituĂ©es d'acides aminĂ©s notamment produites par certains micro-organismes et ciblant virus, bactĂ©ries, fungi et parasites. L'efficacitĂ© des PAM s'explique par leur capacitĂ© Ă  dĂ©stabiliser les membranes, une propriĂ©tĂ© physicochimique liĂ©e Ă  leur caractĂšre amphiphile. A ce jour, le dĂ©veloppement industriel des PAM reste assez limitĂ© Ă  cause de leur cout de production Ă©levĂ© et de leur sensibilitĂ© aux peptidases, empĂȘchant leur administration par voie orale. Des analogues polymĂ©riques comme mimes simplifiĂ©s des PAM ont Ă©tĂ© proposĂ©s pour tenter de lever ces contraintes et les polymĂšres d'acides aminĂ©s sont certainement de trĂšs bons supports pour se rapprocher des PAM. Cette thĂšse prĂ©sente la prĂ©paration de nouveaux copolymĂšres amphiphiles obtenus par polymĂ©risation par ouverture de cycle (ROP) de monomĂšres de type N-carboxyanhydrides-N-mĂ©thylĂ©s (NNCA). Ces monomĂšres NNCA ont Ă©tĂ© obtenus Ă  partir d'acides aminĂ©s issus de la biomasse possĂ©dant une chaine latĂ©rale "hydrophobe" (L-Alanine ; D-Alanine ; L-Leucine et L-PhĂ©nylalanine) ou "cationique" Ă  pH physiologique (L-Lysine) en deux temps : 1) la synthĂšse d'intermĂ©diaires N-Boc-N-mĂ©thylĂ©s en 2 Ă©tapes puis 2) cyclisation en NNCA par la mĂ©thode de Leuchs. Cette mĂ©thodologie a permis de prĂ©parer 4 monomĂšres NNCA "hydrophobes" et 1 monomĂšre "cationique". Ensuite, nous avons analysĂ© les cinĂ©tiques de polymĂ©risation de certains NNCA en prĂ©parant des homopolymĂšres puis nous avons mis en Ɠuvre des rĂ©actions de copolymĂ©risation en mĂ©langeant les NNCA "hydrophobes" et "cationiques". En parallĂšle, nous avons dĂ©terminĂ© les concentrations minimales inhibitrices (CMI) vis-Ă -vis de C. difficile d'une bibliothĂšque de copolypeptoĂŻdes, en Ă©tudiant l'influence de paramĂštres structuraux tels que l'hydrophobicitĂ©, la nature de la chaine latĂ©rale, la nature de l'amorceur et le degrĂ© de polymĂ©risation et avons pu identifier plusieurs polymĂšres aussi actifs que deux molĂ©cules de rĂ©fĂ©rence et peu cytotoxiques vis-Ă -vis de la lignĂ©e Ă©pithĂ©liale Caco-2.Clostridioides difficile (C. difficile) is a spore-forming, strict anaerobic Gram-positive bacillus that often develops in the gut of patients whose intestinal microbiota is destabilized by broad-spectrum antibiotherapy. Currently, C. difficile infection (CDI) is one of the leading causes of healthcare-associated infections, also known as nosocomial infections. Anti-C. difficile antibiotic therapy is mainly based on three molecules that offer contrasting results and in recent years, CDI has become more frequent, more severe and more often recurrent. In 2020, the WHO classified C. difficile as a microorganism posing an urgent threat and a significant risk to human health. Antimicrobial peptides (AMP) are biomolecules constituted of amino acids produced by microorganisms that target viruses, bacteria, fungi and parasites. The effectiveness of AMP is due to their ability to destabilize membranes, a physicochemical property linked to their amphiphilic character. To date, the industrial development of AMP is limited by their high production cost and their sensitivity to peptidases, which prevents their oral administration. Polymeric analogues as simplified mimetics of AMP have been proposed to tackle these constraints and amino acid polymers are certainly very suitable supports to approach AMP. In this thesis, we present the preparation of new amphiphilic copolymers obtained by ring-opening polymerization (ROP) of N-methylated-N-carboxyanhydrides (NNCA) monomers. These NNCA monomers were obtained from bio-sourced amino acids with a "hydrophobic" (L-Alanine; D-Alanine; L-Leucine and L-Phenylalanine) side chain or "cationic" side chain at physiological pH (L-Lysine) in two steps: 1) synthesis of N-Boc-N-methylated intermediates in 2 steps and 2) cyclization into NNCA by the Leuchs method. This methodology allowed to prepare 4 "hydrophobic" NNCA monomers and 1 "cationic" monomer. Then, we analyzed the polymerization kinetics of some NNCA by preparing homopolymers and then we implemented copolymerization reactions by mixing the "hydrophobic" and "cationic" NNCA. In the same time, we determined the minimum inhibitory concentrations (MIC) towards C. difficile of a library of copolypeptoids, by studying the influence of structural parameters such as hydrophobicity, the nature of the side chain, the nature of the initiator and the degree of polymerization, and were able to identify polymers that were as active as two reference molecules and not significantly cytotoxic towards the epithelial line Caco-2

    Analogues polymériques de peptides antimicrobiens à potentiel thérapeutique anti-Clostridioides difficile

    No full text
    Clostridioides difficile (C. difficile) is a spore-forming, strict anaerobic Gram-positive bacillus that often develops in the gut of patients whose intestinal microbiota is destabilized by broad-spectrum antibiotherapy. Currently, C. difficile infection (CDI) is one of the leading causes of healthcare-associated infections, also known as nosocomial infections. Anti-C. difficile antibiotic therapy is mainly based on three molecules that offer contrasting results and in recent years, CDI has become more frequent, more severe and more often recurrent. In 2020, the WHO classified C. difficile as a microorganism posing an urgent threat and a significant risk to human health. Antimicrobial peptides (AMP) are biomolecules constituted of amino acids produced by microorganisms that target viruses, bacteria, fungi and parasites. The effectiveness of AMP is due to their ability to destabilize membranes, a physicochemical property linked to their amphiphilic character. To date, the industrial development of AMP is limited by their high production cost and their sensitivity to peptidases, which prevents their oral administration. Polymeric analogues as simplified mimetics of AMP have been proposed to tackle these constraints and amino acid polymers are certainly very suitable supports to approach AMP. In this thesis, we present the preparation of new amphiphilic copolymers obtained by ring-opening polymerization (ROP) of N-methylated-N-carboxyanhydrides (NNCA) monomers. These NNCA monomers were obtained from bio-sourced amino acids with a "hydrophobic" (L-Alanine; D-Alanine; L-Leucine and L-Phenylalanine) side chain or "cationic" side chain at physiological pH (L-Lysine) in two steps: 1) synthesis of N-Boc-N-methylated intermediates in 2 steps and 2) cyclization into NNCA by the Leuchs method. This methodology allowed to prepare 4 "hydrophobic" NNCA monomers and 1 "cationic" monomer. Then, we analyzed the polymerization kinetics of some NNCA by preparing homopolymers and then we implemented copolymerization reactions by mixing the "hydrophobic" and "cationic" NNCA. In the same time, we determined the minimum inhibitory concentrations (MIC) towards C. difficile of a library of copolypeptoids, by studying the influence of structural parameters such as hydrophobicity, the nature of the side chain, the nature of the initiator and the degree of polymerization, and were able to identify polymers that were as active as two reference molecules and not significantly cytotoxic towards the epithelial line Caco-2.Clostridioides difficile (C. difficile) est un bacille Ă  Gram positif, anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. L'infection Ă  C. difficile (ICD) est la principale consĂ©quence de la colonisation du tube digestif par une souche toxinogĂšne de C. difficile. Aujourd'hui, C. difficile fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es, les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et le risque de rĂ©cidives Ă  trĂšs largement augmentĂ©. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ©. Ainsi, des projets de recherche sur de nouvelles molĂ©cules prĂ©sentant des mĂ©canismes d'action innovants doivent ĂȘtre dĂ©veloppĂ©s afin de lutter contre C. difficile. Clostridioides difficile (C. difficile) est un bacille Gram positif anaĂ©robie strict et sporulĂ© qui se dĂ©veloppe souvent dans la flore intestinale de patients dont le microbiote est dĂ©stabilisĂ© par une antibiothĂ©rapie Ă  spectre large. Aujourd'hui, l'infection Ă  C. difficile (ICD) fait partie des principales causes d'infections associĂ©es aux soins, aussi appelĂ©es infections nosocomiales. L'antibiothĂ©rapie anti-C. difficile repose principalement sur trois molĂ©cules qui offrent des rĂ©sultats contrastĂ©s et depuis quelques annĂ©es : les ICD deviennent plus frĂ©quentes, plus sĂ©vĂšres et rĂ©cidivent souvent. En 2020, l'OMS a classĂ© C. difficile parmi les micro-organismes prĂ©sentant une menace urgente et un risque important pour la santĂ© humaine. Les peptides antimicrobiens (PAM) sont des biomolĂ©cules constituĂ©es d'acides aminĂ©s notamment produites par certains micro-organismes et ciblant virus, bactĂ©ries, fungi et parasites. L'efficacitĂ© des PAM s'explique par leur capacitĂ© Ă  dĂ©stabiliser les membranes, une propriĂ©tĂ© physicochimique liĂ©e Ă  leur caractĂšre amphiphile. A ce jour, le dĂ©veloppement industriel des PAM reste assez limitĂ© Ă  cause de leur cout de production Ă©levĂ© et de leur sensibilitĂ© aux peptidases, empĂȘchant leur administration par voie orale. Des analogues polymĂ©riques comme mimes simplifiĂ©s des PAM ont Ă©tĂ© proposĂ©s pour tenter de lever ces contraintes et les polymĂšres d'acides aminĂ©s sont certainement de trĂšs bons supports pour se rapprocher des PAM. Cette thĂšse prĂ©sente la prĂ©paration de nouveaux copolymĂšres amphiphiles obtenus par polymĂ©risation par ouverture de cycle (ROP) de monomĂšres de type N-carboxyanhydrides-N-mĂ©thylĂ©s (NNCA). Ces monomĂšres NNCA ont Ă©tĂ© obtenus Ă  partir d'acides aminĂ©s issus de la biomasse possĂ©dant une chaine latĂ©rale "hydrophobe" (L-Alanine ; D-Alanine ; L-Leucine et L-PhĂ©nylalanine) ou "cationique" Ă  pH physiologique (L-Lysine) en deux temps : 1) la synthĂšse d'intermĂ©diaires N-Boc-N-mĂ©thylĂ©s en 2 Ă©tapes puis 2) cyclisation en NNCA par la mĂ©thode de Leuchs. Cette mĂ©thodologie a permis de prĂ©parer 4 monomĂšres NNCA "hydrophobes" et 1 monomĂšre "cationique". Ensuite, nous avons analysĂ© les cinĂ©tiques de polymĂ©risation de certains NNCA en prĂ©parant des homopolymĂšres puis nous avons mis en Ɠuvre des rĂ©actions de copolymĂ©risation en mĂ©langeant les NNCA "hydrophobes" et "cationiques". En parallĂšle, nous avons dĂ©terminĂ© les concentrations minimales inhibitrices (CMI) vis-Ă -vis de C. difficile d'une bibliothĂšque de copolypeptoĂŻdes, en Ă©tudiant l'influence de paramĂštres structuraux tels que l'hydrophobicitĂ©, la nature de la chaine latĂ©rale, la nature de l'amorceur et le degrĂ© de polymĂ©risation et avons pu identifier plusieurs polymĂšres aussi actifs que deux molĂ©cules de rĂ©fĂ©rence et peu cytotoxiques vis-Ă -vis de la lignĂ©e Ă©pithĂ©liale Caco-2

    Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides

    No full text
    Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.Analogues Polymériques de Peptides Antimicrobiens à Potentiel Thérapeutique anti-Clostridium difficil

    Effect of N-alkylation in N-carboxyanhydride (NCA) ring-opening polymerization kinetics

    No full text
    International audiencePolypeptoids are an emerging class of biomimetic polymers prepared by ring-opening polymerization (ROP) of N-alkylated-N-carboxyanhydride (NNCA) monomers. The N-alkylation provides a unique structural isomerism with peptides but its influence on NNCA reactivity is not yet fully understood. In this report, we provide a comprehensive study using 12 monomers to better rationalize the contribution of the steric hindrance and electronic effects of the N-alkyl group toward the synthesis of NNCA and their reactivity in ring-opening polymerization (ROP) reactions. We found that varying the alkyl group does not significantly influence the formation of NNCAs prepared by the Leuchs’ method. In marked contrast, depending on the alkyl group, the efficiency of the NNCA polymerization initiated by allylamine showed that electron-donating groups enhanced the ROP kinetic rates through significant inductive effect and could counterbalance the negative influence of bulky groups during the propagation steps

    Star-like poly(peptoid)s with selective antibacterial activity

    No full text
    International audienceWe developed new macromolecular engineering approaches enabling the preparation of star-like polypeptoids by ring-opening polymerization. Parallely to the evaluation of their cytotoxicity of the HepG2 human cell line, their screening toward a wide variety of Gram-positive and Gram-negative bacteria higlighted several compounds showing not only good but also selective antimicrobial activity
    corecore