10 research outputs found

    Einfluss von reversibler epitaktischer Verspannung auf die elektronischen Eigenschaften supraleitender Dünnschichten

    Get PDF
    Eine Methode zur Variation der interatomaren Abstände eröffnet die epitaktische Abscheidung dünner Schichten. Dabei führt die Wahl eines geeigneten Substrates zu Spannungen in der Schichtebene. Im Gegensatz zu hydrostatischen Druckexperimenten an Massivproben ist die dadurch erzeugte biaxiale Verspannung des Kristallgitters von der Art der Probenherstellung abhängig und kann anschließend nicht mehr variiert werden. Werden für verschiedene Verspannungszustände das Substrat und die Präparationsparameter angepasst, beeinflusst dies gleichzeitig das Schichtwachstum. Aus den daraus resultierenden Schichteigenschaften lässt sich der Einfluss der Gitterdeformation nur schwer separieren, was die Vergleichbarkeit von verschiedenen Verspannungszuständen stark einschränkt. Aus diesem Grund konzentrieren sich bisherige Untersuchungen zur Dehnungsempfindlichkeit von supraleitenden Dünnschichten zumeist auf die phänomenologische Beschreibung der Ergebnisse, da sie nur schwer mit der Verspannung in Korrelation zu setzen sind. Da dieses Problem mit herkömmlichen Verfahren nicht zu lösen ist, werden in dieser Arbeit neue Verspannungstechniken auf supraleitende Dünnschichten angewendet und im Besonderen mit dem Fokus auf Fe-basierte Supraleiter untersucht. Zum einen kommen dazu piezoelektrische Substrate zum Einsatz, die eine biaxiale Verspannung der darauf abgeschiedenen Dünnschicht ermöglichen, indem die Gitterparameter des Substrates durch ein elektrisches Feld verändert werden. Zum anderen wird auf Grundlage flexibler Substrate mittels eines Biegeversuchs eine uniaxiale Gitterdeformation von Dünnschichten realisiert. Zusammenfassend wird in dieser Arbeit die Anwendung der dynamischen Verspannung auf supraleitende Schichten für zwei wichtige Materialklassen demonstriert: die Kupferoxid-basierten Supraleiter und die Eisen-basierten Supraleiter. In beiden Fällen konnte ein epitaktisches Wachstum durch gezielte Anpassung der Pufferarchitektur erreicht werden. Im Fall der piezoelektrischen Substrate wurde der vollständige Übertrag der Verspannung in die Schicht nachgewiesen und die Temperaturabhängigkeit der induzierten Dehnung über verschiedene Verfahren ermittelt. Auf dieser Grundlage konnte die Dehnungsempfindlichkeit der supraleitenden Übergangstemperatur, die bisher nur durch statisch verspannte Schichten zugänglich war, näher untersucht werden. Zusätzlich erlaubte der Ansatz die Analyse der Vortexdynamik sowie des oberen kritischen Feldes. Es konnte materialübergreifend gezeigt werden, dass sich die Dehnungsempfindlichkeit der charakteristischen Übergangsfelder einheitlich beschreiben und sich dabei der Vortex-Glas-Flüssigkeits Übergang mit der Aktivierungsenergie korrelieren lässt.:1 Einleitung 1 2 Grundlagen 5 2.1 Supraleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Wachstum dünner Schichten . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Methoden der Gitterverspannung . . . . . . . . . . . . . . . . . . . . . 11 2.4 Dynamische Gitterverspannung von Dünnschichten . . . . . . . . . . . 13 2.4.1 Piezoelektrischer Effekt . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Ferroelektrische Keramiken . . . . . . . . . . . . . . . . . . . . 15 2.4.3 PMN-28%PT als Dünnschicht Substrat . . . . . . . . . . . . . . 18 2.4.4 Verknüpfung von epitaktischer Verspannung und Druck . . . . . 19 3 Experimentelles 21 3.1 Gepulste Laserdeposition - PLD . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Analysemethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Hochenergetische Elektronenbeugung (RHEED) . . . . . . . . . 23 3.2.2 Atomkraftmikroskopie (AFM) . . . . . . . . . . . . . . . . . . . 25 3.2.3 Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.4 Elektrische Transportmessung . . . . . . . . . . . . . . . . . . . 31 3.3 (La,Sr)2CuO4 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Eigenschaften von (La,Sr)2CuO4 Dünnschichten . . . . . . . . . 33 3.3.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 35 3.3.3 LSCO Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 41 3.4 Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Eigenschaften von Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . 44 3.4.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 47 3.4.3 Ba122 Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 51 4 Ergebnisse und Diskussion 55 4.1 Dynamische Verspannung von supraleitenden Dünnschichten . . . . . . 55 4.1.1 Dehnungsübertrag in die Schicht . . . . . . . . . . . . . . . . . 56 4.1.2 LSCO Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.3 Ba122 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Präparation von BaFe1;8Co0;2As2 auf flexiblen Substraten . . . . . . . . 96 4.2.1 Herstellung und Analyse . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 Einfluss leitfähiger Barriereschichten . . . . . . . . . . . . . . . 103 4.2.3 Kritische Stromdichte und Anisotropie . . . . . . . . . . . . . . 109 III Inhaltsverzeichnis 4.2.4 Biegeversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Zusammenfassung und Ausblick 117 Literaturverzeichnis I Publikationsliste XXIII Danksagung XXV Erklärung der Urheberschaft XXVI

    Reversible shift in the superconducting transition for La1.85Sr0.15CuO4 and BaFe1.8Co0.2As2 using piezoelectric substrates

    Get PDF
    The use of piezoelectric substrates enables a dynamic observation of strain dependent properties of functional materials. Based on studies with La1.85Sr0.15CuO4 we extended this approach to the iron arsenic superconductors represented by BaFe2-xCoxAs2 to investigate strain driven changes in detail. We demonstrate that epitaxial thin films can be prepared on (001)Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates using pulsed laser deposition. The structural as well as the electric properties of the grown films were characterized in detail. A reversible shift of the superconducting transition of 0.44 K for La1.85Sr0.15CuO4 and 0.2 K for BaFe1.8Co0.2As2 was observed applying a biaxial strain of 0.022% and 0.017% respectively

    Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    Get PDF
    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1−xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1−xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1−xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1−xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1−xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C–320 °C) on MgO using PLD. This offers a broad scope of various applications

    Einfluss von reversibler epitaktischer Verspannung auf die elektronischen Eigenschaften supraleitender Dünnschichten

    Get PDF
    Eine Methode zur Variation der interatomaren Abstände eröffnet die epitaktische Abscheidung dünner Schichten. Dabei führt die Wahl eines geeigneten Substrates zu Spannungen in der Schichtebene. Im Gegensatz zu hydrostatischen Druckexperimenten an Massivproben ist die dadurch erzeugte biaxiale Verspannung des Kristallgitters von der Art der Probenherstellung abhängig und kann anschließend nicht mehr variiert werden. Werden für verschiedene Verspannungszustände das Substrat und die Präparationsparameter angepasst, beeinflusst dies gleichzeitig das Schichtwachstum. Aus den daraus resultierenden Schichteigenschaften lässt sich der Einfluss der Gitterdeformation nur schwer separieren, was die Vergleichbarkeit von verschiedenen Verspannungszuständen stark einschränkt. Aus diesem Grund konzentrieren sich bisherige Untersuchungen zur Dehnungsempfindlichkeit von supraleitenden Dünnschichten zumeist auf die phänomenologische Beschreibung der Ergebnisse, da sie nur schwer mit der Verspannung in Korrelation zu setzen sind. Da dieses Problem mit herkömmlichen Verfahren nicht zu lösen ist, werden in dieser Arbeit neue Verspannungstechniken auf supraleitende Dünnschichten angewendet und im Besonderen mit dem Fokus auf Fe-basierte Supraleiter untersucht. Zum einen kommen dazu piezoelektrische Substrate zum Einsatz, die eine biaxiale Verspannung der darauf abgeschiedenen Dünnschicht ermöglichen, indem die Gitterparameter des Substrates durch ein elektrisches Feld verändert werden. Zum anderen wird auf Grundlage flexibler Substrate mittels eines Biegeversuchs eine uniaxiale Gitterdeformation von Dünnschichten realisiert. Zusammenfassend wird in dieser Arbeit die Anwendung der dynamischen Verspannung auf supraleitende Schichten für zwei wichtige Materialklassen demonstriert: die Kupferoxid-basierten Supraleiter und die Eisen-basierten Supraleiter. In beiden Fällen konnte ein epitaktisches Wachstum durch gezielte Anpassung der Pufferarchitektur erreicht werden. Im Fall der piezoelektrischen Substrate wurde der vollständige Übertrag der Verspannung in die Schicht nachgewiesen und die Temperaturabhängigkeit der induzierten Dehnung über verschiedene Verfahren ermittelt. Auf dieser Grundlage konnte die Dehnungsempfindlichkeit der supraleitenden Übergangstemperatur, die bisher nur durch statisch verspannte Schichten zugänglich war, näher untersucht werden. Zusätzlich erlaubte der Ansatz die Analyse der Vortexdynamik sowie des oberen kritischen Feldes. Es konnte materialübergreifend gezeigt werden, dass sich die Dehnungsempfindlichkeit der charakteristischen Übergangsfelder einheitlich beschreiben und sich dabei der Vortex-Glas-Flüssigkeits Übergang mit der Aktivierungsenergie korrelieren lässt.:1 Einleitung 1 2 Grundlagen 5 2.1 Supraleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Wachstum dünner Schichten . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Methoden der Gitterverspannung . . . . . . . . . . . . . . . . . . . . . 11 2.4 Dynamische Gitterverspannung von Dünnschichten . . . . . . . . . . . 13 2.4.1 Piezoelektrischer Effekt . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Ferroelektrische Keramiken . . . . . . . . . . . . . . . . . . . . 15 2.4.3 PMN-28%PT als Dünnschicht Substrat . . . . . . . . . . . . . . 18 2.4.4 Verknüpfung von epitaktischer Verspannung und Druck . . . . . 19 3 Experimentelles 21 3.1 Gepulste Laserdeposition - PLD . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Analysemethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Hochenergetische Elektronenbeugung (RHEED) . . . . . . . . . 23 3.2.2 Atomkraftmikroskopie (AFM) . . . . . . . . . . . . . . . . . . . 25 3.2.3 Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.4 Elektrische Transportmessung . . . . . . . . . . . . . . . . . . . 31 3.3 (La,Sr)2CuO4 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Eigenschaften von (La,Sr)2CuO4 Dünnschichten . . . . . . . . . 33 3.3.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 35 3.3.3 LSCO Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 41 3.4 Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Eigenschaften von Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . 44 3.4.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 47 3.4.3 Ba122 Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 51 4 Ergebnisse und Diskussion 55 4.1 Dynamische Verspannung von supraleitenden Dünnschichten . . . . . . 55 4.1.1 Dehnungsübertrag in die Schicht . . . . . . . . . . . . . . . . . 56 4.1.2 LSCO Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.3 Ba122 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Präparation von BaFe1;8Co0;2As2 auf flexiblen Substraten . . . . . . . . 96 4.2.1 Herstellung und Analyse . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 Einfluss leitfähiger Barriereschichten . . . . . . . . . . . . . . . 103 4.2.3 Kritische Stromdichte und Anisotropie . . . . . . . . . . . . . . 109 III Inhaltsverzeichnis 4.2.4 Biegeversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Zusammenfassung und Ausblick 117 Literaturverzeichnis I Publikationsliste XXIII Danksagung XXV Erklärung der Urheberschaft XXVI

    Einfluss von reversibler epitaktischer Verspannung auf die elektronischen Eigenschaften supraleitender Dünnschichten

    No full text
    Eine Methode zur Variation der interatomaren Abstände eröffnet die epitaktische Abscheidung dünner Schichten. Dabei führt die Wahl eines geeigneten Substrates zu Spannungen in der Schichtebene. Im Gegensatz zu hydrostatischen Druckexperimenten an Massivproben ist die dadurch erzeugte biaxiale Verspannung des Kristallgitters von der Art der Probenherstellung abhängig und kann anschließend nicht mehr variiert werden. Werden für verschiedene Verspannungszustände das Substrat und die Präparationsparameter angepasst, beeinflusst dies gleichzeitig das Schichtwachstum. Aus den daraus resultierenden Schichteigenschaften lässt sich der Einfluss der Gitterdeformation nur schwer separieren, was die Vergleichbarkeit von verschiedenen Verspannungszuständen stark einschränkt. Aus diesem Grund konzentrieren sich bisherige Untersuchungen zur Dehnungsempfindlichkeit von supraleitenden Dünnschichten zumeist auf die phänomenologische Beschreibung der Ergebnisse, da sie nur schwer mit der Verspannung in Korrelation zu setzen sind. Da dieses Problem mit herkömmlichen Verfahren nicht zu lösen ist, werden in dieser Arbeit neue Verspannungstechniken auf supraleitende Dünnschichten angewendet und im Besonderen mit dem Fokus auf Fe-basierte Supraleiter untersucht. Zum einen kommen dazu piezoelektrische Substrate zum Einsatz, die eine biaxiale Verspannung der darauf abgeschiedenen Dünnschicht ermöglichen, indem die Gitterparameter des Substrates durch ein elektrisches Feld verändert werden. Zum anderen wird auf Grundlage flexibler Substrate mittels eines Biegeversuchs eine uniaxiale Gitterdeformation von Dünnschichten realisiert. Zusammenfassend wird in dieser Arbeit die Anwendung der dynamischen Verspannung auf supraleitende Schichten für zwei wichtige Materialklassen demonstriert: die Kupferoxid-basierten Supraleiter und die Eisen-basierten Supraleiter. In beiden Fällen konnte ein epitaktisches Wachstum durch gezielte Anpassung der Pufferarchitektur erreicht werden. Im Fall der piezoelektrischen Substrate wurde der vollständige Übertrag der Verspannung in die Schicht nachgewiesen und die Temperaturabhängigkeit der induzierten Dehnung über verschiedene Verfahren ermittelt. Auf dieser Grundlage konnte die Dehnungsempfindlichkeit der supraleitenden Übergangstemperatur, die bisher nur durch statisch verspannte Schichten zugänglich war, näher untersucht werden. Zusätzlich erlaubte der Ansatz die Analyse der Vortexdynamik sowie des oberen kritischen Feldes. Es konnte materialübergreifend gezeigt werden, dass sich die Dehnungsempfindlichkeit der charakteristischen Übergangsfelder einheitlich beschreiben und sich dabei der Vortex-Glas-Flüssigkeits Übergang mit der Aktivierungsenergie korrelieren lässt.:1 Einleitung 1 2 Grundlagen 5 2.1 Supraleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Wachstum dünner Schichten . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Methoden der Gitterverspannung . . . . . . . . . . . . . . . . . . . . . 11 2.4 Dynamische Gitterverspannung von Dünnschichten . . . . . . . . . . . 13 2.4.1 Piezoelektrischer Effekt . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Ferroelektrische Keramiken . . . . . . . . . . . . . . . . . . . . 15 2.4.3 PMN-28%PT als Dünnschicht Substrat . . . . . . . . . . . . . . 18 2.4.4 Verknüpfung von epitaktischer Verspannung und Druck . . . . . 19 3 Experimentelles 21 3.1 Gepulste Laserdeposition - PLD . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Analysemethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Hochenergetische Elektronenbeugung (RHEED) . . . . . . . . . 23 3.2.2 Atomkraftmikroskopie (AFM) . . . . . . . . . . . . . . . . . . . 25 3.2.3 Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.4 Elektrische Transportmessung . . . . . . . . . . . . . . . . . . . 31 3.3 (La,Sr)2CuO4 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Eigenschaften von (La,Sr)2CuO4 Dünnschichten . . . . . . . . . 33 3.3.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 35 3.3.3 LSCO Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 41 3.4 Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Eigenschaften von Ba(Fe,Co)2As2 Dünnschichten . . . . . . . . 44 3.4.2 Epitaktisches Wachstum auf Einkristallen . . . . . . . . . . . . 47 3.4.3 Ba122 Dünnschichten auf PMN-PT . . . . . . . . . . . . . . . . 51 4 Ergebnisse und Diskussion 55 4.1 Dynamische Verspannung von supraleitenden Dünnschichten . . . . . . 55 4.1.1 Dehnungsübertrag in die Schicht . . . . . . . . . . . . . . . . . 56 4.1.2 LSCO Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.3 Ba122 Dünnschichten . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Präparation von BaFe1;8Co0;2As2 auf flexiblen Substraten . . . . . . . . 96 4.2.1 Herstellung und Analyse . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 Einfluss leitfähiger Barriereschichten . . . . . . . . . . . . . . . 103 4.2.3 Kritische Stromdichte und Anisotropie . . . . . . . . . . . . . . 109 III Inhaltsverzeichnis 4.2.4 Biegeversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Zusammenfassung und Ausblick 117 Literaturverzeichnis I Publikationsliste XXIII Danksagung XXV Erklärung der Urheberschaft XXVI
    corecore