Supplementary Information

Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

Sebastian Molatta^{1,2,3,*}, Silvia Haind^{3,4}, Sascha Trommler^{2,3}, Michael Schulze^{2,3}, Sabine Wurmehl^{2,3}, Ruben Hühne³

¹Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany

²Dresden University of Technology, Department of Physics, D-01062 Dresden, Germany

³Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany

⁴Physikalisches Institut, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany *corresponding author's e-mail address: s.molatta@hzdr.de

SI XRD of unseeded film at high deposition temperature

In Fig. S 1 the XRD θ -2 θ -scans of films grown directly on MgO at T_D 's of 530 °C and 300 °C are shown. Besides *c*-axis grown components of the film with $T_D = 530$ °C ((00*l*)-reflections) there are additional *out-of-plane* orientations observable. Peaks of the (*h*0*l*) as well as the (*h*k*l*) orientation are found [Fig. S 1(a)]. With decreasing T_D the intensity of the peaks for orientations different from (00*l*) decreases rapidly. The XRD θ -2 θ -scan of the film with $T_D = 300$ °C shows exclusively *c*-axis oriention *out-of-plane* [Fig. S 1(b)].

Figure S1. XRD θ -2 θ -scan of FeSe_{1-x}Te_x thin films grown on MgO at (a) $T_D = 530 \degree \text{C}$ and (b) $T_D = 300 \degree \text{C}$. The \star indicates the $\lambda/2$ -peak of MgO.

SII In-plane texture: Comparison between unseeded and seeded films on MgO

Evaluating the FWHM of the peaks of the *in-plane* orientation of the temperature series [Fig. S 2] shows a strong increase of $\Delta\phi$ for both texture components for the thin films without seed layer for decreasing $T_{\rm D}$. In contrast to that, the $\Delta\phi$ values of thin films with seed layer stay more or less constant with decreasing deposition temperature.

Figure S2. $\Delta \phi$ of the texture components of the samples without and with seed layer in dependence of $T_{\rm D}$.

SIII Resistance measurements of films without seed layer

From the resistance measurements [Fig. S 3] $T_{c,90}$ and ΔT_c for the thin films without seed layer are obtained. ΔT_c is calculated from the temperature where the resistance reaches 90% of the normal state resistance minus the temperature where the resistance reaches 10% of the normal state resistance.

Figure S3. Temperature dependence of the normalized resistance ($R_N = R(100\%)$) for thin films without seed layer.

SIV Comparison of the surface morphology

The surface morphology of a sample without seed layer [Fig. S4 (a) $T_D = 300 \degree \text{C}$, $\tau = 1$] and a sample with seed layer [Fig. S4 (b) $T_D = 240 \degree \text{C}$] was evaluated with AFM. The rms-values of the samples show an improvement of the surface roughness by a factor of 2.

Figure S4. AFM images of a thin film grown without seed layer [(a) $T_D = 300 \degree \text{C}$, $\tau = 1$] and a film on the seed layer [(b) $T_D = 240 \degree \text{C}$]. The red lines mark the position of the profiles below.