6 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Math2Mat ::from Octave/Matlab to VHDL

    No full text
    Math2Mat aims at automatically generating a VHDL description of a mathematical description written in Octave/Matlab. The generation creates a synthesizable RTL description using floating point operators (32 or 64 bits) combined in a fully pipelined way. Emphasis is put on the throughput attainable by the design, especially in the ”for loop” implementation. The software also offers a graphical user interface, letting the developer manage the different parameters before generation. Verification can also be launched from the software, a SystemVerilog testbench being automatically generated

    A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing

    Get PDF
    We present a compactly integrated, 625 MHz clocked coherent one-way quantum key distribution system which continuously distributes secret keys over an optical fibre link. To support high secret key rates, we implemented a fast hardware key distillation engine which allows for key distillation rates up to 4 Mbps in real time. The system employs wavelength multiplexing in order to run over only a single optical fibre. Using fast gated InGaAs single photon detectors, we reliably distribute secret keys with a rate above 21 kbps over 25 km of optical fibre. We optimized the system considering a security analysis that respects finite-key-size effects, authentication costs and system errors for a security parameter of εQKD = 4 × 10−9

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore