38 research outputs found

    Full statistics of erasure processes: Isothermal adiabatic theory and a statistical Landauer principle

    Full text link
    We study driven finite quantum systems in contact with a thermal reservoir in the regime in which the system changes slowly in comparison to the equilibration time. The associated isothermal adiabatic theorem allows us to control the full statistics of energy transfers in quasi-static processes. Within this approach, we extend Landauer's Principle on the energetic cost of erasure processes to the level of the full statistics and elucidate the nature of the fluctuations breaking Landauer's bound.Comment: 24 pages, 4 figures; In the new version, Section 4 contains an extended discussion of the violation of Landauer's boun

    Full statistics of energy conservation in two times measurement protocols

    Full text link
    The first law of thermodynamics states that the average total energy current between different reservoirs vanishes at large times. In this note we examine this fact at the level of the full statistics of two times measurement protocols also known as the Full Counting Statistics. Under very general conditions, we establish a tight form of the first law asserting that the fluctuations of the total energy current computed from the energy variation distribution are exponentially suppressed in the large time limit. We illustrate this general result using two examples: the Anderson impurity model and a 2D spin lattice model.Comment: 5 pages, 1 figure. Accepted for publication in Phys. Rev.

    Control of fluctuations and heavy tails for heat variation in the two-time measurement framework

    Full text link
    We study heat fluctuations in the two-time measurement framework. For bounded perturbations, we give sufficient ultraviolet regularity conditions on the perturbation for the moments of the heat variation to be uniformly bounded in time, and for the Fourier transform of the heat variation distribution to be analytic and uniformly bounded in time in a complex neighborhood of 0. On a set of canonical examples, with bounded and unbounded perturbations, we show that our ultraviolet conditions are essentially necessary. If the form factor of the perturbation does not meet our assumptions, the heat variation distribution exhibits heavy tails. The tails can be as heavy as preventing the existence of a fourth moment of the heat variation

    SystĂšmes quantiques ouverts et processus stochastiques quantiques

    No full text
    Many quantum physics phenomena can only be understood in the context of open system analysis. For example a measurement apparatus is a macroscopic system in contact with a quantum system. Therefore any experiment model needs to take into account open system behaviors. These behaviors can be complex: the interaction of the system with its environment might modify its properties, the interaction may induce memory effects in the system evolution, ... These dynamics are particularly important when studying quantum optic experiments. We are now able to manipulate individual particles. Understanding and controlling the environment influence is therefore crucial. In this thesis we investigate at a theoretical level some commonly used quantum optic procedures. Before the presentation of our results, we introduce and motivate the Markovian approach to open quantum systems. We present both the usual master equation and quantum stochastic calculus. We then introduce the notion of quantum trajectory for the description of continuous indirect measurements. It is in this context that we present the results obtained during this thesis. First, we study the convergence of non demolition measurements. We show that they reproduce the system wave function collapse. We show that this convergence is exponential with a fixed rate. We bound the mean convergence time. In this context, we obtain the continuous time limit of discrete quantum trajectories using martingale change of measure techniques. Second, we investigate the influence of measurement outcome recording on state preparation using reservoir engineering techniques. We show that measurement outcome recording does not influence the convergence itself. Nevertheless, we find that measurement outcome recording modifies the system behavior before the convergence. We recover an exponential convergence with a rate equivalent to the rate without measurement outcome recording. But we also find a new convergence rate corresponding to an asymptotic stability. This last rate is interpreted as an added non demolition measurement. Hence, the system state converges only after a random time. At this time the convergence can be much faster. We also find a bound on the mean convergence time.De nombreux phĂ©nomĂšnes de physique quantique ne peuvent ĂȘtre compris que par l'analyse des systĂšmes ouverts. Un appareil de mesure, par exemple, est un systĂšme macroscopique en contact avec un systĂšme quantique. Ainsi, tout modĂšle d'expĂ©rience doit prendre en compte les dynamiques propres aux systĂšmes ouverts. Ces dynamiques peuvent ĂȘtre complexes : l'interaction du systĂšme avec son environnement peut modifier ses propriĂ©tĂ©s, l'interaction peu crĂ©er des effets de mĂ©moire dans l'Ă©volution du systĂšme, . . . Ces dynamiques sont particuliĂšrement importantes dans l'Ă©tude des expĂ©riences d'optique quantique. Nous sommes aujourd'hui capables de manipuler individuellement des particules. Pour cela la comprĂ©hension et le contrĂŽle de l'influence de l'environnement est crucial. Dans cette thĂšse nous Ă©tudions d'un point de vue thĂ©orique quelques procĂ©dures communĂ©ment utilisĂ©es en optique quantique. Avant la prĂ©sentation de nos rĂ©sultats, nous introduisons et motivons l'utilisation de la description markovienne des systĂšmes quantiques ouverts. Nous prĂ©sentons a la fois les Ă©quations maĂźtresses et le calcul stochastique quantique. Nous introduisons ensuite la notion de trajectoire quantique pour la description des mesures indirectes continues. C'est dans ce contexte que l'on prĂ©sente les rĂ©sultats obtenus au cours de cette thĂšse. Dans un premier temps, nous Ă©tudions la convergence des mesures non destructives. Nous montrons qu'elles reproduisent la rĂ©duction du paquet d'onde du systĂšme mesurĂ©. Nous montrons que cette convergence est exponentielle avec un taux fixe. Nous bornons le temps moyen de convergence. Dans ce cadre, en utilisant les techniques de changement de mesure par martingale, nous obtenons la limite continue des trajectoires quantiques discrĂštes. Dans un second temps, nous Ă©tudions l'influence de l'enregistrement des rĂ©sultats de mesure sur la prĂ©paration d'Ă©tat par ingĂ©nierie de rĂ©servoir. Nous montrons que l'enregistrement des rĂ©sultats de mesure n'a pas d'influence sur la convergence proprement dite. Cependant, nous trouvons que l'enregistrement des rĂ©sultats de mesure modifie le comportement du systĂšme avant la convergence. Nous retrouvons une convergence exponentielle avec un taux Ă©quivalent au taux sans enregistrement. Mais nous trouvons aussi un nouveau taux de convergence correspondant a une stabilitĂ© asymptotique. Ce dernier taux est interprĂ©tĂ© comme une mesure non destructive ajoutĂ©e. Ainsi l'Ă©tat du systĂšme ne converge qu'aprĂšs un temps alĂ©atoire. A partir de ce temps la convergence peut ĂȘtre bien plus rapide. Nous obtenons aussi une borne sur le temps moyen de convergence
    corecore