8 research outputs found

    Potential for energy production from farm wastes using anaerobic digestion in the UK : An economic comparison of different size plants

    Get PDF
    Anaerobic digestion (AD) plants enable renewable fuel, heat, and electricity production, with their efficiency and capital cost strongly dependent on their installed capacity. In this work, the technical and economic feasibility of different scale AD combined heat and power (CHP) plants was analyzed. Process configurations involving the use of waste produced in different farms as feedstock for a centralized AD plant were assessed too. The results show that the levelized cost of electricity are lower for large-scale plants due to the use of more efficient conversion devices and their lower capital cost per unit of electricity produced. The levelized cost of electricity was estimated to be 4.3 p/kWhe for AD plants processing the waste of 125 dairy cow sized herds compared to 1.9 p/kWhe for AD plants processing waste of 1000 dairy cow sized herds. The techno-economic feasibility of the installation of CO2 capture units in centralized AD-CHP plants was also undertaken. The conducted research demonstrated that negative CO2 emission AD power generation plants could be economically viable with currently paid feed-in tariffs in the UK

    Thermo-catalytic reforming pyrolysis of ensiled Saccharina latissima dominated macroalgal pellets for bioenergy production

    Get PDF
    Marine macroalgae is a biomass resource for the manufacture of fuels and chemicals, which can be sustainably harvested from seaweed farms or from man-made structures where it accumulates as a biofouling organism. However, in temperate regions farmed macroalgae can only be harvested between late Spring and early Summer, limiting year-round availability. Here we show that a conventional grass ensilage procedure preserves Saccharina latissima dominated biomass on the tonne scale for 30 months, enabling year-round use of this biomass. Following processing, the resulting dried and pelletised ensiled macroalgae material was subject to Thermo-Catalytic Reforming™, comprising sequential pyrolysis (450 °C) and either dry or steam catalytic reforming (700 °C) processes. Both processing methods produced a mixture of bio-oil (1.6–1.9 wt%) and hydrogen-rich permanent gases (30.9–31.1 wt%) with higher heating values of 34.8–35.4 MJ/kg and 18.0–24.2 MJ/m3, respectively, together with char (45.5–48.5 % wt). The permanent gases can be used directly for heat generation, while hydro-treatment of the bio-oil would afford a material that can be blended with traditional transport fuels. This work demonstrates that if operated at scale, the combined harvesting, ensilaging and Thermo-Catalytic Reforming™ of preserved macroalgal biomass offers a year-round decentralised energy resource

    AgroCycle – developing a circular economy in agriculture

    Get PDF
    Continuing population growth and increasing consumption are driving global food demand, with agricultural activity expanding to keep pace. The modern agricultural system is wasteful, with Europe generating some 700 million tonnes of agrifood (agricultural and food) waste each year. The Agricultural Centre for Sustainable Energy Systems (ACSES) at Harper Adams University is involved in a major research and innovation project (AgroCycle) on the application of the ‘circular economy’ across the agri-food sector. In the context of the agrifood chain, the ‘circular economy’ aims to reduce waste while also making best use of the ‘wastes’ produced by using economically viable processes and procedures to increase their value . Led by University College Dublin, AgroCycle is a Horizon 2020 collaborative project with 26 partners. AgroCycle will address such opportunities directly by implementation of the ‘circular economy’ across the agri-food sector. The authors will present (a) a summary of the AgroCycle project and (b) the role played by Harper Adams in the project in evaluating the potential for small-scale anaerobic digestion (AD) technology that can be applied on farm to provide local heat, energy and nutrient recovery from mixed agricultural wastes
    corecore