9 research outputs found

    Nicotine Pretreatment Increases Dysphoric Effects of Alcohol in Luteal-Phase Female Volunteers

    Get PDF
    The present report shows that nicotine enhances some of alcohol’s positive and negative effects in women and that these effects are most pronounced during the luteal phase of the menstrual cycle. Ten low progesterone and 10 high progesterone/luteal-phase women received nicotine patch pretreatments (placebo or 21 mg) 3 hours before an alcohol challenge (0.4 g/kg). Subjective effects were recorded on mood adjective scales and the Addiction Research Center Inventory (ARCI). Heart rate and skin temperature were recorded. Luteal-phase women reported peak positive (e.g. “stimulated”) and peak negative effects (e.g. “clumsy”, “dizzy”) almost twice as great as low progesterone women

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Protecting the global ocean for biodiversity, food and climate

    Get PDF
    The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action

    Reply to: A path forward for analysing the impacts of marine protected areas

    No full text
    [Extract] We appreciate the recommendations from Hilborn and Kaiser to further our analysis1, and although we agree with some of the suggestions in their Comment2 as a basis for future work, they do oversimplify and mischaracterize several of our conclusions. First, Hilborn and Kaiser2 comment on our assumptions about effort redistribution once marine protected areas (MPAs) are created. They suggest that we were inconsistent in our treatment of effort redistribution and that the benefits to biodiversity and carbon would be nullified under a full-effort transfer scenario; however, we disagree with this suggestion. The objective of our analysis was to identify the most beneficial areas to place MPAs, which are a commonly used tool to conserve biodiversity, help to recover fish stocks and can mitigate climate change3,4,5,6,7. We tested how the location of the most beneficial places would change under two different assumptions of how fishing effort relocates outside the MPA after implementation: (1) no effort is relocated and (2) all effort is relocated. The first assumption implies an overall reduction in total fishing effort as areas of the ocean get protected and we applied it consistently across the three objectives. We find that under this assumption, protecting 24% of the ocean would maximize benefits across all objectives if biodiversity and food provision are set to be equally important (figure 3 and supplementary figures 10 and 13 of ref. 1)

    Organismos modificados para el medio ambiente: historias de éxito y fracaso, y qué hemos aprendido de ellas

    Get PDF
    The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology.The work of our laboratories cited in this article was funded by grants of the Spanish Ministry of Education and Science, the European Union, and the Conservation Biology Program of the BBVA Foundation.Peer reviewe

    Organismos modificados para el medio ambiente: historias de éxito y fracaso, y qué hemos aprendido de ellas

    Get PDF
    The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology.The work of our laboratories cited in this article was funded by grants of the Spanish Ministry of Education and Science, the European Union, and the Conservation Biology Program of the BBVA Foundation.Peer reviewe
    corecore