164 research outputs found

    Photon Momentum Transfer in Single-Photon Double Ionization of Helium

    No full text
    We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization

    Closed-loop recycling of rare liquid samples for gas-phase experiments

    Get PDF
    Many samples of current interest in molecular physics and physical chemistry exist in the liquid phase and are vaporized for use in gas cells, diffuse gas targets, or molecular gas jets. For some of these techniques, the large sample consumption is a limiting factor. When rare, expensive molecules such as custom-made chiral molecules or species with isotopic labels are used, wasting them in the exhaust line of the pumps is quite an expensive and inefficient approach. Therefore, we developed a closed-loop recycling system for molecules with vapor pressures below atmospheric pressure. Once filled, only a few valves have to be adjusted, and a cold trap must be moved after each phase of recycling. The recycling efficiency per turn exceeds 95%

    A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution

    Get PDF
    We present a unique experimental design that enables the measurement of photoelectron circular dichroism (PECD) from chiral molecules in aqueous solution. The effect is revealed from the intensity difference of photoelectron emission into a backward-scattering angle relative to the photon propagation direction when ionizing with circularly polarized light of different helicity. This leads to asymmetries (normalized intensity differences) that depend on the handedness of the chiral sample and exceed the ones in conventional dichroic mechanisms by orders of magnitude. The asymmetry is largest for photon energies within several electron volts above the ionization threshold. A primary aim is to explore the effect of hydration on PECD. The modular and flexible design of our experimental setup EASI (Electronic structure from Aqueous Solutions and Interfaces) also allows for detection of more common photoelectron angular distributions, requiring distinctively different detection geometries and typically using linearly polarized light. A microjet is used for liquid-sample delivery. We describe EASI’s technical features and present two selected experimental results, one based on synchrotron-light measurements and the other performed in the laboratory, using monochromatized He-II α radiation. The former demonstrates the principal effectiveness of PECD detection, illustrated for prototypic gas-phase fenchone. We also discuss the first data from liquid fenchone. In the second example, we present valence photoelectron spectra from liquid water and NaI aqueous solution, here obtained from a planar-surface microjet (flatjet). This new development features a more favorable symmetry for angle-dependent photoelectron measurements

    A measurement of the evolution of Interatomic Coulombic Decay in the time domain

    Full text link
    During the last 15 years a novel decay mechanism of excited atoms has been discovered and investigated. This so called ''Interatomic Coulombic Decay'' (ICD) involves the chemical environment of the electronically excited atom: the excitation energy is transferred (in many cases over long distances) to a neighbor of the initially excited particle usually ionizing that neighbor. It turned out that ICD is a very common decay route in nature as it occurs across van-der-Waals and hydrogen bonds. The time evolution of ICD is predicted to be highly complex, as its efficiency strongly depends on the distance of the atoms involved and this distance typically changes during the decay. Here we present the first direct measurement of the temporal evolution of ICD using a novel experimental approach.Comment: 6 pages, 4 figures, submitted to PR

    Vibrationally Resolved Decay Width of Interatomic Coulombic Decay in HeNe

    Full text link
    We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+^+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay (ICD) in HeNe dimers. We find that the ICD lifetime strongly increases with increasing vibrational state.Comment: 7 pages, 5 figure

    Interatomic-Coulombic-decay-induced recapture of photoelectrons in helium dimers

    Full text link
    We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron.Comment: 5 Pages, 2 Figure

    Vibrationally Resolved Inner-Shell Photoexcitation of the Molecular Anion C2−_2^-

    Full text link
    Carbon 1s1s core-hole excitation of the molecular anion C2−_2^- has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo--double-detachment shows a pronounced vibrational structure associated with 1σu→3σg1\sigma_u\to3\sigma_g and 1σg→1πu1\sigma_g \to 1\pi_u core excitations of the C2−_2^- ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2−_2^- molecular anion by 0.2~\AA\ upon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2−_2^- 1σu−1 3σg2  2ÎŁu+1\sigma_u^{-1}\,3\sigma_g^2\;{^2}\Sigma_u^+ and 1σg−1 3σg2  2ÎŁg+1\sigma_g^{-1}\,3\sigma_g^2\;{^2}\Sigma_g^+ core-excited levels.Comment: 8 pages, 5 figures, 1 table, accepted for publication in ChemPhysChe

    Ion impact induced Interatomic Coulombic Decay in neon and argon dimers

    Full text link
    We investigate the contribution of Interatomic Coulombic Decay induced by ion impact in neon and argon dimers (Ne2_2 and Ar2_2) to the production of low energy electrons. Our experiments cover a broad range of perturbation strengths and reaction channels. We use 11.37 MeV/u S14+^{14+}, 0.125 MeV/u He1+^{1+}, 0.1625 MeV/u He1+^{1+} and 0.150 MeV/u He2+^{2+} as projectiles and study ionization, single and double electron transfer to the projectile as well as projectile electron loss processes. The application of a COLTRIMS reaction microscope enables us to retrieve the three-dimensional momentum vectors of the ion pairs of the fragmenting dimer into Neq+^{q+}/Ne1+^{1+} and Arq+^{q+}/Ar1+^{1+} (q = 1, 2, 3) in coincidence with at least one emitted electron
    • 

    corecore