8 research outputs found

    Clonal Hematopoiesis Before, During, and After Human Spaceflight.

    Get PDF
    Clonal hematopoiesis (CH) occurs when blood cells harboring an advantageous mutation propagate faster than others. These mutations confer a risk for hematological cancers and cardiovascular disease. Here, we analyze CH in blood samples from a pair of twin astronauts over 4 years in bulk and fractionated cell populations using a targeted CH panel, linked-read whole-genome sequencing, and deep RNA sequencing. We show CH with distinct mutational profiles and increasing allelic fraction that includes a high-risk, TET2 clone in one subject and two DNMT3A mutations on distinct alleles in the other twin. These astronauts exhibit CH almost two decades prior to the mean age at which it is typically detected and show larger shifts in clone size than age-matched controls or radiotherapy patients, based on a longitudinal cohort of 157 cancer patients. As such, longitudinal monitoring of CH may serve as an important metric for overall cancer and cardiovascular risk in astronauts

    The Rate of Supernovae at Redshift 0.1 − 1.0 : the Stockholm VIMOS Supernova Survey IV

    No full text
    We present supernova rate measurements at redshift 0.1–1.5 from the Stockholm VIMOS Supernova Survey (SVISS). The sample contains 16 supernovae in total. The discovered supernovae have been classified into core collapse or thermonuclear (Ia) types based on their light curves, colour evolution and host galaxy photometric redshift. The rates we find for the core collapse supernovae are 1.25 (+2.27 +0.85 −0.97 −0.78) - with statistical and systematic errors, respectively - at z = 0.39 and 6.90 (+5.24 +3.04 −3.25 −2.14) at z = 0.73. For the Ia supernovae the rates are 2.02 (+1.57 +0.53−0.96 −0.57) at z = 0.39 and 1.03 (+0.92 +0.31−0.54 −0.36) at z = 0.80. All of these rate estimates have been corrected for host galaxy extinction. Using Monte Carlo simulations we make a thorough study of the systematic effects from assumptions made when calculating the rates and find that the most important errors comes from misclassification, the assumed mix of faint and bright supernova types and uncertainties in redshift. We compare our rates to other observations, to the star formation history for core collapse rates and to different models of the delay time distribution for Ia rates. Overall, our measurements agree quite well with these other rates when using redshift-dependent corrections for extinction. We do not find any evidence of a missing fraction of core collapse supernovae.Author count:10;</p
    corecore