119 research outputs found

    Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism

    Get PDF
    X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.The work was supported by the following funding sources: Fondazione Telethon, Italy grant no. GGP20130 (to G.T.); Society for Endocrinology equipment grant (to G.T.); Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH) Research project Z01-HD008920 (to C.A.S., supporting G.T., F.R.F.); Fonds d’Investissement pour la Recherche Scientifique (FIRS) of the Centre Hospitalier Universitaire de Liège (to A.F.D. and A.B.); the JABBS Foundation, UK (to A.B.); and Novo Nordisk Belgium Educational Grant, Belgium (to A.F.D. and A.B.). M.F. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#800396) and a Juan de la Cierva-Formación fellowship from the Spanish Ministry of Science and Innovation (FJC2018-038233-I). G.T. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#843843). A.F.D. and D.A. were supported by Action de Recherche Concertée (ARC) Grant 17/21-01 from Liège University. D.A. was supported by grants from Télévie (7461117 F, 7454719 F) and the Léon Fredericq Foundation, Belgium

    Pandemic Drugs at Pandemic Speed: Infrastructure for Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers

    Get PDF
    The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case, developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers

    IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads

    Get PDF
    The drug discovery process currently employed in the pharmaceutical industry typically requires about 10 years and $2–3 billion to deliver one new drug. This is both too expensive and too slow, especially in emergencies like the COVID-19 pandemic. In silico methodologies need to be improved both to select better lead compounds, so as to improve the efficiency of later stages in the drug discovery protocol, and to identify those lead compounds more quickly. No known methodological approach can deliver this combination of higher quality and speed. Here, we describe an Integrated Modeling PipEline for COVID Cure by Assessing Better LEads (IMPECCABLE) that employs multiple methodological innovations to overcome this fundamental limitation. We also describe the computational framework that we have developed to support these innovations at scale, and characterize the performance of this framework in terms of throughput, peak performance, and scientific results. We show that individual workflow components deliver 100 × to 1000 × improvement over traditional methods, and that the integration of methods, supported by scalable infrastructure, speeds up drug discovery by orders of magnitudes. IMPECCABLE has screened ∼ 1011 ligands and has been used to discover a promising drug candidate. These capabilities have been used by the US DOE National Virtual Biotechnology Laboratory and the EU Centre of Excellence in Computational Biomedicine

    DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation syndrome is a major risk factor for glaucoma in many populations throughout the world. Using a U.S. clinic-based case control sample with broad ethnic diversity, we show that three common SNPs in LOXL1 previously associated with pseudoexfoliation in Nordic populations are significantly associated with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.</p> <p>Methods</p> <p>Three LOXL1 SNPs were genotyped in a patient sample (206 pseudoexfoliation, 331 primary open angle glaucoma, and 88 controls) from the Glaucoma Consultation Service at the Massachusetts Eye and Ear Infirmary. The SNPs were evaluation for association with pseudeoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open angle glaucoma.</p> <p>Results</p> <p>The strongest association was found for the G allele of marker rs3825942 (G153D) with a frequency of 99% in pseudoexfoliation patients (with and without glaucoma) compared with 79% in controls (p = 1.6 × 10<sup>-15</sup>; OR = 20.93, 95%CI: 8.06, 54.39). The homozygous GG genotype is also associated with pseudoexfoliation when compared to controls (p = 1.2 × 10<sup>-12</sup>; OR = 23.57, 95%CI: 7.95, 69.85). None of the SNPs were significantly associated with primary open angle glaucoma.</p> <p>Conclusion</p> <p>The pseudoexfoliation syndrome is a common cause of glaucoma. These results indicate that the G153D LOXL1 variant is significantly associated with an increased risk of pseudoexfoliation and pseudoexfoliation glaucoma in an ethnically diverse patient population from the Northeastern United States. Given the high prevalence of pseudooexfoliation in this geographic region, these results also indicate that the G153D LOXL1 variant is a significant risk factor for adult-onset glaucoma in this clinic based population.</p

    The Functional −765G→C Polymorphism of the COX-2 Gene May Reduce the Risk of Developing Crohn's Disease

    Get PDF
    Contains fulltext : 87827.pdf (publisher's version ) (Open Access)BACKGROUND: Cyclooxygenase-2 (COX-2) is a key enzyme involved in the conversion of arachidonic acid into prostaglandins. COX-2 is mainly induced at sites of inflammation in response to proinflammatory cytokines such as interleukin-1alpha/beta, interferon-gamma and tumor necrosis factor-alpha produced by inflammatory cells. AIM: The aim of this study was to investigate the possible modulating effect of the functional COX-2 polymorphisms -1195 A-->G and -765G-->C on the risk for development of inflammatory bowel disease (IBD) in a Dutch population. METHODS: Genomic DNA of 525 patients with Crohn's disease (CD), 211 patients with ulcerative colitis (UC) and 973 healthy controls was genotyped for the -1195 A-->G (rs689466) and -765G-->C (rs20417) polymorphisms. Distribution of genotypes in patients and controls were compared and genotype-phenotype interactions were investigated. RESULTS: The genotype distribution of the -1195A-->G polymorphism was not different between the patients with CD or UC and the control group. The -765GG genotype was more prevalent in CD patients compared to controls with an OR of 1.33 (95%CI 1.04-1.69, pC polymorphism was associated with a reduced risk for developing Crohn's disease in a Dutch population

    Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE<sub>2 </sub>cell surface receptors (EP 1–4) to examine the mechanisms by which PGE<sub>2 </sub>regulates tumour progression.</p> <p>Methods</p> <p>Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue.</p> <p>Results</p> <p>EP4 was the most abundant subtype of PGE<sub>2 </sub>receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE<sub>2 </sub>generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 μM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE<sub>2 </sub>(1 μM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21<sup>WAF1/CIP1 </sup>expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21<sup>WAF1/CIP1 </sup>was also seen with PD153025 (1 μM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted.</p> <p>Conclusion</p> <p>COX-2 regulates cell cycle transition via EP4 receptor and altered p21<sup>WAF1/CIP1 </sup>expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.</p

    Polymorphism in COX-2 modifies the inverse association between Helicobacter pylori seropositivity and esophageal squamous cell carcinoma risk in Taiwan: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of Cyclooxygenase-2 (COX-2) was observed in many types of cancers, including esophageal squamous cell carcinoma (ESCC). One functional SNP, COX-2 -1195G/A, has been reported to mediate susceptibility of ESCC in Chinese populations. In our previous study, the presence of <it>Helicobacter pylori </it>(<it>H. pylori</it>) was found to play a protective role in development of ESCC. The interaction of COX-2 and <it>H. pylori </it>in gastric cancer was well investigated. However, literature on their interaction in ESCC risk is scarce. The purpose of this study was to evaluate the association and interaction between COX-2 single nucleotide polymorphism (SNP), <it>H. pylori </it>infection and the risk of developing ESCC.</p> <p>Methods</p> <p>One hundred and eighty patients with ESCC and 194 controls were enrolled in this study. Personal data regarding related risk factors, including alcohol consumption, smoking habits and betel quid chewing, were collected via questionnaire. Genotypes of the COX-2 -1195 polymorphism were determined by PCR-based restriction fragment length polymorphism. <it>H. pylori </it>seropositivity was defined by immunochromatographic screening test. Data was analyzed by chi-squared tests and polytomous logistics regression.</p> <p>Results</p> <p>In analysis adjusting for the covariates and confounders, <it>H. pylori </it>seropositivity was found to be inversely association with the ESCC development (adjusted OR: 0.5, 95% CI: 0.3 – 0.9). COX-2 -1195 AA homozygous was associated with an increased risk of contracting ESCC in comparison with the non-AA group, especially among patients with <it>H. pylori </it>seronegative (adjusted OR ratio: 2.9, 95% CI: 1.2 – 7.3). The effect was strengthened among patients with lower third ESCC (adjusted OR ratio: 6.9, 95% CI 2.1 – 22.5). Besides, <it>H. pylori </it>seropositivity conveyed a notably inverse effect among patients with COX-2 AA polymorphism (AOR ratio: 0.3, 95% CI: 0.1 – 0.9), and the effect was observed to be enhanced for the lower third ESCC patients (AOR ratio: 0.09, 95% CI: 0.02 – 0.47, <it>p </it>for multiplicative interaction 0.008)</p> <p>Conclusion</p> <p><it>H. pylori </it>seropositivity is inversely associated with the risk of ESCC in Taiwan, and COX-2 -1195 polymorphism plays a role in modifying the influence between <it>H. pylori </it>and ESCC, especially in lower third esophagus.</p
    corecore