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The race to meet the challenges of the global pandemic has served
as a reminder that the existing drug discovery process is expensive, inefficient
and slow. There is a major bottleneck screening the vast number of potential
small molecules to shortlist lead compounds for antiviral drug development.
New opportunities to accelerate drug discovery lie at the interface between
machine learning methods, in this case, developed for linear accelerators,
and physics-based methods. The two in silico methods, each have their own
advantages and limitations which, interestingly, complement each other.
Here, we present an innovative infrastructural development that combines
both approaches to accelerate drug discovery. The scale of the potential result-
ing workflow is such that it is dependent on supercomputing to achieve
extremely high throughput. We have demonstrated the viability of this work-
flow for the study of inhibitors for four COVID-19 target proteins and our
ability to perform the required large-scale calculations to identify lead anti-
viral compounds through repurposing on a variety of supercomputers.
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1. Introduction
The COVID-19 pandemic has shaken the world, and the scale
and rapidity of the crisis have also challenged existing
methods of doing research, not least the current drug
design process, which takes about 10 years and $1–3 billion
to develop a single marketable drug molecule [1,2]. The dis-
ease is caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a member of the coronavirus
family, which was first identified in the mid-1960s at the
Common Cold Unit in Wiltshire, England [3]. Discovering
how to combat the pandemic rests on understanding recent
outbreaks, such as severe acute respiratory syndrome corona-
virus (SARS-CoV), which has the most closely related
genome, and Middle East respiratory syndrome coronavirus
(MERS-CoV), and taking advantage of the explosion of
research in 2020 on various aspects of SARS-CoV-2 biology,
from the transmission to the life cycle. Based on this research,
notably experimentally derived structures for the various
viral target proteins, several drug repositioning and drug
designing studies have been conducted using in silico
computer-based modelling technologies [4–6]. However, the
identification of conclusive drug molecules has been ham-
pered by the huge chemical space that needs to be explored.

Because of the vast number of potential ligands (ranging
from a few hundred million to billions), it is clearly not poss-
ible to synthesize them in wet laboratories, nor is it desirable
given that most of them are not going to bind with SARS-
CoV-2 proteins at all. This is where in silico methods can
play an important role in screening the binding affinity of
ligands with SARS-CoV-2 proteins to identify and rank
potential drug candidates.

There is an increasingly large number of in silico methods
available to screen candidate ligands. The two most popular
categories are physics-based (PB) techniques including
molecular dynamics (MD) based methods and machine
learning (ML) techniques. However, both have inevitable
limitations and, even after months of research, there is a dis-
appointing lack of potential antiviral drug candidates for
COVID-19 given that so many lives are at stake. There is an
urgent need to accelerate the current drug design process
and the work presented here is a step in that direction.

PB techniques involve ab initio as well as semi-empirical
methods which are fully or partially derived from firm theor-
etical foundations [7–10]. For example, MD is a popular
approach for conformational sampling which is derived
from Newtonian equations of motion and the concepts of
statistical thermodynamics. MD-based free energy calculation
methods have been widely applied for predicting protein–
ligand binding affinities and are subject to extensive exper-
imental validation [11–22]. There are many such free energy
methods, some ‘approximate’; others more ‘accurate’.

In the last decade or so, ensemble simulation-based
methods have been proposed which overcome the issue of
variability in predictions from MD-based methods due to
their extreme sensitivity to simulation initial conditions
[13,19–23] which leads to chaotic behaviour, and non-
Gaussian statistics [24,25]. In particular, two methods
named enhanced sampling of MD with approximation of
continuum solvent (ESMACS) [13,14,17,26] and thermodyn-
amic integration with enhanced sampling (TIES) [19–22]
have been shown to deliver accurate, precise and reproduci-
ble binding affinity predictions within a few hours. Their
excellent scalability allows them to calculate binding affinities
for a large number of protein–ligand complexes in parallel,
using the large size and multiple nodes of current
supercomputers.

Another important factor affecting the reliability of
results is the extent of conformational sampling achieved by
MD simulations. Thus, several enhanced methods have
also been developed to better sample the phase space [27].
However, even such enhanced sampling is prone to variabil-
ity in results due to extreme sensitivity to initial conditions.
Once again, ensemble simulations are required to control
uncertainties in predictions [20–22].

However, these in silico methods are computationally
demanding and are unable to explore the extensive chemical
space relevant for drug molecule generation. To focus the
hunt, they require extensive consultation with chemists to
suggest structural features or specific functional groups that
may improve a ligand’s interaction with the target protein,
based on the chemical environment of the binding pocket.
Drawing on human intelligence (HI) and insights takes time
and slows the process of drug discovery by delaying the pipe-
line of candidate ligands to wet laboratories for testing. Even
if this step is accelerated, another bottleneck in drug design
looms because there is a limit to the number of compounds
that can be studied experimentally.

To overcome the limitations of PB methods, ML methods
can be employed. Prediction of binding affinities using a
deep neural network has been an active area of research
over the past few years. ML represents a set of techniques
that rely on inferring complex relationships from big data
and applications that include diverse fields such as robotics,
gaming, language processing and chemoinformatics. Some
examples include classifying kinase conformations [28], pre-
dicting antimicrobial resistance [29], modelling quantitative
structure–activity relationships [30] and predicting contact
maps in protein folding [31], with AlphaFold making
important progress in protein structure prediction [32].

In the field of drug discovery, ML, specifically deep
learning (DL), allows us to generate novel drug-like molecules
by sampling a significant subset of the chemical space of
relevance. DL techniques are computationally much cheaper
and enable quick turnaround of results which allows millions
to billions of compounds to be handled [33]. Recent develop-
ments in DL allow the generation of novel drug-like
molecules in silico by sampling a large fraction of the
chemical space of relevance (estimated to be about 1068 com-
pounds). However, the accuracy of ML/DL methods is very
much dependent on the training data. Their predictive capa-
bility can be improved by providing them with reliable data
and by curating them with theoretical understanding [34],
neither of which may always be available. This restricts their
applicability in the drug discovery domain.

ML and PB methods have their own advantages and
limitations. Fortunately, their strengths and weaknesses
complement each other and so it makes sense to couple
them in drug discovery. In the past few years, several
attempts have been made to create synergies between PB
and ML methods in order to get favourable outcomes. A
major application has been to enhance sampling in MD simu-
lations which includes learning of optimal biasing potentials,
optimal collective variables (CVs) or free energy surfaces
[35–42]. Examples are also available for approaches that
involve deriving MD-based descriptors that can be used to
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train ML models for predictions of solvation, hydration
and/or transfer free energies [43–45]. Studies have shown
that the accuracy of alchemical free energy predictions may
be improved by ‘correcting’ them through ML-based post-
processing [46–47]. In addition, it has been reported that
the prediction of ligand activity/affinity against a target can
be achieved with a combination of MD and ML [48–51].
Recently, a method combining DL and MD for generation
of antimicrobial peptides has been reported where DL
methods were used to generate 90 000 peptide sequences
which underwent in silico screening to finally obtain 20
sequences for experimental validation [52].

ML/DL techniques can be employed to augment HI with
artificial intelligence (AI) for exploring the large chemical
space to predict ‘useful’ ligand molecules. This substantially
speeds up the process of ligand discovery. On the other
hand, reliable PB free energy methods can rank the ligands
on the basis of their binding affinities and ground the
simulations on theoretical understanding. These binding affi-
nities can then be fed back into the DL algorithm to augment
its knowledge base and hone predictions. Such a combination
can be an effective tool for drug design and can prove useful
in prospective drug design projects. Robust predictive
mechanistic models are of particular value for constraining
ML when dealing with sparse data, exploring vast design
spaces to seek correlations and, most importantly, testing if
correlations are causal [53].

It is well accepted that drug targets can undergo
significant conformational changes during their biological
activity. Some of these changes may involve large-scale
rearrangements, such as a domain motion over a hinge
region, while some others may be more limited in size,
such as the short-lived opening of a mostly hydrophobic
cryptic site. The interesting point is that they can involve
targetable structures that might otherwise remain hidden
to experimental structural determination. Although PB
models, such as MD simulations, can explore conformational
space to some extent, they can hardly achieve ergodicity,
resulting in some of the potential new target structures
remaining hidden. Here DL approaches are envisaged to
explore whether a short stretch of an MD trajectory may
exhibit the hallmarks of potentially biologically relevant
structural transitions, even though such transitions are not
observed in the trajectory itself.

Not only will exploitation of AI ensure that the best use is
made of medicinal chemists for drug discovery, it also helps
counter chemists’ bias during exploration of the chemical
space. Carefully trained DL algorithms may be expected to
reach regions of the extensive chemical space that may
remain untouched by humans.

In this work, we present a novel in silico method for drug
design by coupling ML with PB methods. We bring together
several methods into a coherent scientific workflow—some of
which are already being applied in drug discovery while
others are relatively new to the field and yet to be adopted.
Rather than performing only blind ML/DL, we couple
them with accurate PB methods to make them ‘smarter’.
Potential candidates are selected from the output of a DL
algorithm and they are scored using PB methods to calculate
binding free energies. This information is then fed back to the
DL algorithm to refine its predictive capability. This loop pro-
ceeds iteratively involving a variety of PB scoring methods
with increasing levels of accuracies at each step ensuring
that the DL algorithm gets progressively more ‘intelligent’.
As described above, several methods employing a construc-
tive combination of ML and PB methods have been
reported in the past few years. However, the pipeline
described in this article is unique in several ways. We attempt
to generate ligand structures with improved binding potency
towards a given target protein using an iterative loop with
both upward and downward exchange of information at
each step—this, we believe, has not been attempted before.
We posit that our innovative integration of PB and ML-
based methods can substantially reduce the throughput
time for exploring huge chemical space and improve the effi-
cacy of the exploration of chemical libraries for lead
discovery. It is worth mentioning here that since the success
of lead molecules identified at pre-clinical stages is heavily
dependent on several factors like membrane permeability,
toxicity, water solubility, etc., drug repurposing provides
another avenue for quick availability of COVID-19 thera-
peutics and needs to be pursued. This approach has not
been very successful so far despite several studies published
for repurposing; only a couple of drugs (remdesivir and
baricitinib) have been approved by USFDA for emergency
use against COVID-19 (not actually addressing COVID-19
but secondary infections caused by it). Nevertheless, the
approach has potential. We have applied our approach for
drug repurposing as well with thus far encouraging results
[54]. We obtained binding affinities agreeing well with exper-
imental measurements and also gained detailed energetic
insight into the nature of drug–protein binding that would
be useful in drug discovery for the target studied.

Given the large-scale supercomputing infrastructure
available to us, we are able to scale to the vast number of cal-
culations required to provide input to the ML models.
Equally important, our methods are designed to provide
key uncertainty quantification, a feature vital to our goal of
using active learning to optimize campaigns of simulations
to maximize the chance that predictive ML models will find
promising drug candidates. Our present paper is not a scien-
tific research paper in a conventional sense. We report an
accelerated drug discovery pipeline but do not include any
novel scientific findings here, which will be the subject of
subsequent publications. Currently, PB components of our
workflow have already been implemented successfully in iso-
lation, whereas it is work in progress for some of the ML
components that still need optimization. Our integrated
workflow implementation has also not been fully realized.
In addition, we are working towards improving the overall
computational performance of this complicated and hetero-
geneous workflow. We have made substantial progress in
this regard in the past few months as described in the follow-
ing sections. In this paper, we report preliminary results
obtained using our workflow as it stands now to demonstrate
that our approach has the potential to impact the process of
drug discovery.
2. Methods
No single algorithm or method can achieve the necessary accu-
racy with required efficiency to sample the huge chemical
space inhabited by lead compounds for drug discovery. We inno-
vated by combining multiple algorithms into a single unified
pipeline (figure 1), using an interactive and iterative method-
ology, allowing both upstream and downstream feedback to



high-throughput
docking (S1)

offline ensemble
docking

enhanced sampling of 
protein target states

improved binding
free-energy estimates

ML-predict docking
scores (ML1)

stability
measures/features for

protein–ligand
interactions 

coarse-grained
binding affinity

(S3–CG)

latent space representation
and

steered advanced sampling
(S2) 

fine-grained
binding affinity
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Figure 1. Integrated modelling pipeline for new COVID-19 treatments where blind ML is made ‘smarter’ with accurate PB methods. It represents an entire virtual
drug discovery pipeline, from hit to lead through to lead optimization. The constituent components are DL-based surrogate model for docking (ML1), Autodock-GPU
(S1), coarse and fine-grained binding free energies (S3-CG and S3-FG) and S2 (DeepDriveMD). The arrows show the information transferred between the different
methods. (Source: IMPECCABLE [55].)
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overcome the limitations of classical in silico drug design as
described above.

We first describe the different components of our workflow,
notably their standalone strengths and weaknesses, then show
how we couple them constructively in the workflow such that
the sum is greater than the parts.
2.1. High-throughput docking
Protein–ligand docking involves ligand three-dimensional struc-
ture (conformer) enumeration, exhaustive docking and scoring
and pose scoring. The input requires a protein structure with a
designed binding region, or a crystallized ligand from which a
region can be inferred, as well as a database of small molecules
to dock, where the chemical structure is represented in the
SMILES format.

Conversion of the two-dimensional structures into three-
dimensional structures ready for structural docking is performed
through proteinization and conformer generation using Omega-
Tautomers that also includes enumeration of enantiomers prior
to conformer generation if stereochemistry is not specified [56].
Conformer generation is performed on the ensemble of
structures, typically generating 200–800 three-dimensional con-
formers for every enantiomer.

Each of the three-dimensional structures so generated is
docked against the protein binding pocket and scored. The best
scoring pose is returned along with its ChemGauss4 score from
exhaustive rigid docking [57]. The ranking obtained using such
docking scores are useful in the initial hit identification stage of
the drug discovery pipeline.

As a consequence, the outputs of docking runs include a
three-dimensional protein (receptor) structure with the docked
ligand in its binding site. The docking score (evaluated by the
scoring function specific to a docking protocol) provides a
qualitative measure of the intrinsic complementarity between a
given ligand and protein binding site. While docking protocols
are generally good at estimating the binding poses (i.e. three-
dimensional conformation) of ligands within a binding site, the
energetics of interaction can be challenging to determine and
are a function of how a specific scoring function is implemented.
Nevertheless, docking is extensively used in structure-based
drug design approaches. This is so because docking can predict
whether or not a molecule binds at all with the target protein.
In addition, given that it is a computationally cheap technique,
it makes economic sense to have an additional filter before per-
forming the expensive binding affinity calculations. In our
protocol, docking is implemented at the initial stage to identify
an area of interest in the chemical space and filter out all the
obvious non-binders. Thereafter, we employ MD-based binding
affinity prediction methods for more accurate ranking of the
available compounds on the top ranked compounds based on
their docking scores.

Furthermore, there is a need to account for the intrinsic
flexibility of the protein in response to the ligand (which
may also induce conformational changes) in the energetics of
how ligands/proteins interact. For this purpose, extensive con-
formational sampling is often necessary. The enhanced/
adaptive sampling techniques described below can address
some of the intrinsic limitations of these techniques.
2.2. Machine learning-based conformation transition
classifier

In order to investigate the conformational transitions during MD
simulations, we used two 10 µs trajectories, made available by
D.E. Shaw Research [58], of the SARS-CoV-2 spike glycoprotein
starting from two main different conformations (i.e. 6VYB and
6VXX, partially open and closed states, respectively). The dic-
tionary of secondary structure of proteins (DSSP) [59] is used
to classify each residue according to its secondary structure in
all the frames of the trajectory. A total of 8334 frames are
extracted from the 10 µs simulations of the spike glycoprotein.
The data used for the analysis consist of the atomic coordinates
of the protein’s Cα atoms and secondary structures of the protein
residues, according to DSSP. To analyse the conformations, we
adapted the ML-based anomaly detection techniques previously
designed and employed at the European Organization for
Nuclear Research (CERN) for scientific and medical linear
accelerators [60]. We predicted the probability of a local protein
conformational change based on transitions occurring in
individual trajectories.



Table 1. Classes of secondary structure that DSSP defines.

letter ID number ID
class of the secondary
structure

G 0 310 helix (first helix)

H 1 α helix

I 2 π helix

E 3 β sheet

B 4 β bridge

T 5 helix turn

S 6 bend

C 7 coil (no SS found)

Table 2. Jensen–Shannon divergence (a measure of the similarity between
two probability distributions; bounded between 0 and 1) between
predicted and observed secondary class transitions in the 6VXX trajectory of
the spike protein system. Data are presented in decreasing order of
similarity. The labels code for the initial and final class. When they are
identical, it means that after some oscillation, the residue goes back to the
initial class.

transition Jensen–Shannon divergence

‘43’ 4.91 × 10−3

‘34’ 5.67 × 10−3

‘01’ 7.70 × 10−3

‘33’ 1.02 × 10−2

‘12’ 1.21 × 10−2

‘00’ 1.62 × 10−2

‘11’ 1.93 × 10−2

‘21’ 4.38 × 10−2

‘22’ 6.14 × 10−2

‘44’ 6.51 × 10−2

‘10’ 1.54 × 10−1

‘04’ 3.68 × 10−1

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20210018

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 O

ct
ob

er
 2

02
1 
The trajectory of each Cα in class-space is followed in time

until a change of class is observed at time ta. From that time
on, the transitions between different classes, if any, are tracked
for 100 subsequent frames, forming a corresponding set of sto-
chastic transitions matrices, whose elements Tkl represent the
transition frequency from class k to class l, where k,l = {0..7} (cf.
table 1). Only a few transitions out of the possible 64 are effec-
tively observed within the examined dataset. The most
frequently observed are the transitions between identical or
structurally adjacent classes.

The stochastic transition matrices are then turned into heat
maps and fed into a convolutional neural network (CNN). The
neural network was a two-layer CNN, trained using the Reptile
meta-learning algorithm [61]. The input layer has a single chan-
nel of 8 by 8 pixels. It uses Keras implementation of the relu
activation function, the sparse categorical cross entropy loss
function and the adam optimizer. The transition-based classifi-
cation is used to predict the probability of belonging to a class
and of the class that the selected residue might land at a future
time, typically after 1500 frames since the initial class change.
We compared the prediction with the frequency of belonging
to each class, as observed throughout the simulation that was
not used for training, i.e. that starting from the 6VXX structure.
The similarity between the different distributions was evaluated
via the Jensen–Shannon divergence [62]. Our preliminary results,
shown in table 2, are encouraging, although subject to a number
of caveats. First and foremost, the training and the validation
dataset (70 : 30) pertain to a single trajectory, which implies
that some transitions are trained on a very small number of
events. Hence, multi-trajectory data are needed to consolidate
these preliminary results. Using more data would also allow
additional classes to be introduced, thus obtaining a more precise
estimation of residues’ behaviour. This is currently the subject of
ongoing research.
2.3. Machine learning-driven enhanced sampling
DL methods have been widely applied to understand protein
conformational dynamics, and a number of methods have been
proposed to enhance sampling of conformational landscapes
using adaptive sampling strategies that include DL methods in
their workflows. One such approach, namely DeepDriveMD,
uses variational autoencoders to cluster high-dimensional data
on conformations from multiple MD trajectories into a more
manageable low dimensional manifold from which ‘novel’
conformations can be selected, based on certain reaction coordi-
nates (RCs) or CVs and new simulations can be instantiated from
such conformations [63]. This approach has been demonstrated
for protein folding trajectories, offering at least 2× speedup com-
pared to traditional conformational sampling methods, and in a
recent application, DeepDriveMD was able to enhance sampling
by nearly 25% with just 12% of computing time for studying con-
formational transitions of the SARS-CoV-2 spike protein bound
to the ACE2 receptor [64]. Thus, DeepDriveMD offers a way for-
ward in sampling conformational events, providing a framework
to extend its functionality to account for studying protein–ligand
interactions.

Ligands bound to the protein target of interest induce specific
conformational changes; some ligands may induce changes
that are local to the binding site, whereas others may induce
changes farther away from the binding site. We posit that even
with reasonably short timescale simulations, our variational
autoencoder can cluster protein–ligand interaction landscapes
based on such conformational differences and provide a quanti-
tative way to extract ligand-specific protein conformational
signatures that could help bound the uncertainty in binding affi-
nity calculations. To this effect, we extracted the contact maps
between the protein Cα-atoms (defined at an 8 Å cut-off ) and
analysed them with our variational autoencoder. Optimal
hyperparameters were determined as described previously [65]
and the resulting latent space embedding was visualized using
t-stochastic neighbourhood embedding (t-SNE) approach. In
our analysis, we observe clear separation between protein and
ligand complexes, and that some ligands induce more confor-
mational changes than others.

2.4. Molecular dynamics-based binding affinity
prediction

Hit-to-lead (H2L) is a step in the drug discovery process where
promising lead compounds are identified from initial hits—
small molecules which have the desired activity—generated
during preceding stages. After evaluation of initial hits, optimiz-
ation of promising compounds is carried out to achieve
nanomolar affinities. The change in free energy between free
and bound states of protein and ligand, also known as binding
affinity, is a promising measure of the binding potency of a mol-
ecule and is used as a parameter for evaluating and optimizing
hits at the H2L stage.
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A protocol known as ESMACS [13,17] was used to estimate
binding affinities of protein–ligand complexes. It involves per-
forming an ensemble of MD simulations followed by free
energy estimation using a semi-empirical method called molecu-
lar mechanics Poisson–Boltzmann surface area (MMPBSA).
The free energies for the ensemble of conformations are analysed
in a statistically robust manner, yielding precise free energy
predictions for any given complex.

The use of ensembles is particularly important because the
usual practice of performing MMPBSA calculations on confor-
mations generated using a single MD simulation does not give
reliable binding affinities [66]. Consequently, ESMACS predic-
tions can be used to rank a large number of hits based on their
binding affinities. ESMACS is able to handle large variations in
ligand structures and hence is very suitable for H2L stage
where hits have been picked out after covering a substantial
region of chemical space.

The ensemble of conformations for the protein–ligand com-
plex generated using MD simulations are also analysed using
the variational autoencoder technique described above to get
insights into favourable as well as unfavourable interactions of
different functional groups in a molecule with the target protein.
This knowledge is helpful in performing further optimization of
the lead structures. The information and data generated with
ESMACS are additionally used to train our ML model (described
below) to improve its predictive capability.

Lead optimization (LO) is the final step of pre-clinical drug
discovery. It involves altering the structures of selected lead com-
pounds in order to improve properties, such as selectivity, potency
and pharmacokinetic parameters. Binding affinity is a useful par-
ameter to make in silico predictions about the effects of any
chemical alteration in a lead molecule. However, LO requires
theoretically more accurate (without much/any approximations)
methods to make predictions with high confidence. In addition,
relative binding affinity of pairs of compounds that are structu-
rally similar are of interest, rendering ESMACS unsuitable for LO.

Because of these issues, we employ TIES [19–21], which
is based on an alchemical free energy method called thermo-
dynamic integration (TI) [67]. Alchemical methods involve
calculating free energy along a non-physical thermodynamic
pathway to get relative free energy between the two endpoints.
A best practice guide for alchemical free energy calculations
was recently published with useful recommendations [68].
Usually, the alchemical pathway corresponds to transformation
of one chemical species into another defined with a coupling par-
ameter (λ), ranging between 0 and 1. TIES involves performing
an ensemble simulation at each λ value to generate the ensemble
of conformations to be used for calculating relative free energy. It
also involves performing a robust error analysis to yield relative
binding affinities with statistically meaningful error bars. The
parameters such as the size of the ensemble and the length of
simulations are determined keeping in mind the desired level
of precision in the results [19].

2.5. Machine learning-based model to predict useful
ligands

In our drug discovery workflow, ML is used to gather and
accumulate information from all the other PB components
described above so as to quickly locate the most interesting
region(s) in the chemical space in terms of the potential of a
lead compound to bind strongly. We have created a ML surro-
gate model using a simple featurization method, namely two-
dimensional image depictions, as it does not require complicated
architectures such as graph convolution networks while demon-
strating good prediction. We obtain these image depictions from
the nCov-Group Data Repository [69] that contains various
descriptors for 4.2 billion molecules generated on high-
performance computing (HPC) systems with Parsl [70]. By
using two-dimensional images, we are able to initialize our
models with pre-trained weights that are typically scale and
rotation invariant under image classification. This model is
used to generate ligand molecules that can be analysed using
the PB methods described above. We train our ML model
using data from both docking as well as MD-based binding affi-
nity predictions so as to enable it to actively relate structural/
chemical features with corresponding binding potencies. This
allows our ML model to progressively make more accurate pre-
dictions of ligand structures that can be classified as initial hits.
The predicted structures are then fed into the PB pipeline to
filter them, first using docking and then by ESMACS and TIES,
to finally select those that bind most effectively. This is repeated
with the ML model getting better after each iteration. Thus, we
provide reliable training data to our ML models, whereas poten-
tially good initial structures are identified for our PB methods. In
this way, our workflow couples ML and MD such that each com-
pensates for the weaknesses in the other method. It is our
expectation that, together, they are more effective.
3. Workflow management
Our workflow (figure 1) integrates different methods and
dynamically selects active ligands for progressively computa-
tionally expensive methods. At each stage, only the most
promising candidates advance to the next stage, yielding a
pipeline in which each downstream stage is computationally
more expensive, but also more accurate, than upstream
stages. Execution of such a complicated workflow requires
scalable tools with advanced resource management, task-
placement and adaptive execution capabilities, in this case
RADICAL-Cybertools (RCT) [71] middleware.

RCT executes tasks concurrently or sequentially, depending
on their arbitrary priority relation. Tasks are grouped into
stages and stages into pipelines, depending on the priority
relation among tasks. Tasks without reciprocal priority relation
canbegrouped into thesamestage, tasksthatneed tobeexecuted
before other taskshave tobegrouped intodifferent stages. Stages
are then grouped into pipelines and, in turn, multiple pipelines
can be executed either concurrently or sequentially. RCT uses
RADICAL-Pilot (RP) [72] to execute tasks on HPC resources,
allowing the execution of workflows with heterogeneous tasks.

RCT middleware has been used in two ways:

Scalable concurrent multi-stage task-execution. A work
around was required to use the middleware on one of
Europe’s largest supercomputers, SuperMUC-NG. As RAD-
ICAL-Cybertools depend on third-party software modules,
the virtual environment required by RP could not be created
on SuperMUC-NG because access is granted only to allowed
IP addresses. Thus, we prepared RCT’s virtual environment
outside of the system and then moved it to SuperMUC-NG
login node. In this way, RCT could be launched from a
login node via the pre-set environment, without the need
for outbound Internet access. RCT uses MongoDB and Rab-
bitMQ as communication services. These services need to
be accessible from both login and compute nodes. On Super-
MUC-NG, we automated the launching of both services on a
dedicated compute node, which was provided by a special
service queue with unlimited walltime, while the workers
for RP were provided by the regular batch system.

Concurrent multiple workflow execution. RCT’s fine-level
task-placement feature allows the concurrent use of both



Figure 2. Structures of the four target proteins studied, in each case shown bound to a compound. From left to right: 3CLPro, PLPro, ADRP and NSP15. The proteins
are shown in cartoon representation and compounds in stick representation.
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CPUs and GPUs on supercomputer nodes. That is achieved
by employing RADICAL-Pilot’s unique capability of concur-
rently executing heterogeneous tasks on CPU cores and GPUs
as an integrated hybrid workflow. This allows the concurrent
execution and interleaving of different workflows, making
better use of compute resources. RP places tasks on specific
compute nodes, cores and GPU [73]. When scheduling
tasks that require different amounts of cores and/or GPUs,
RP keeps tracks of the available slots on each compute
node of its pilot. Depending on availability, RP schedules
CPU tasks (e.g. MPI) within and across compute nodes and
reserves a CPU core for each GPU task. This results in effi-
cient placement of heterogeneous tasks on heterogeneous
resources.

Leveraging aforementioned RP’s heterogeneous task-
placement capabilities, we merge ESMACS and TIES into
an integrated hybrid workflow with heterogeneous tasks
that use CPU and GPU concurrently. Running these two
calculations concurrently reduces the total execution time,
substantially saving computational cost, thereby improving
resource utilization at scale.

In the past few months, we have progressed substantially
with the implementation of our workflow. RCT is now fully
functional on Summit [55,73,74] as well as Theta [75], in
addition to several other HPC resources. It has successfully
executed workloads at 95% usage on these machines. We
characterized scaling performance of various components of
our workflow using up to 392 000 cores and 24 582 GPUs to
execute 24 552 heterogeneous executable tasks and 126 × 106

python function tasks [74]. Recently, we have been able to
achieve a performance of 144 M h−1 docking hits screening
approximately 1011 ligands using over 8000 compute nodes,
which is better than the previous best by a factor of two
[76]. This has substantially boosted our ability to screen
large compound libraries as well as generating training
data for surrogate models. We have already analysed several
million compounds from a set of orderable compound
libraries using the current implementation of our workflow
and filtered out compounds for the second iteration of our
iterative workflow. Recently accepted publications in IEEE
TPDS, ACM SIGHPC ICPP, ACM SIGHPC PASC [55,73–
74], as well as publications under review [75,76] provide
evidence of our progress towards the fully optimized
implementation of the workflow.
4. High-performance computing resources
Our workflow is by design based on high-throughput com-
putational (HTC) calculations. Even though it reduces the
overall number of necessary computations tremendously, an
acceptable time to solution is only achievable on HPC
resources. To illustrate the impact of our workflow, we
applied it to four target proteins of SARS-CoV-2 in this
work, namely 3C like protease (3CLPro; also known as the
main protease), papain-like protease (PLPro), ADP-ribose
phosphatase (ADRP; a macrodomain of NSP3) and non-
structural protein 15 (NSP15) (figure 2). These proteins
have diverse functions for the replication and transcription
of the coronavirus and are important targets for pharma-
ceutical drug design and discovery [77–81]. For this,
docking calculations were performed on thousands of ML
model-generated ligand conformations, leading to a ranking
of candidates with corresponding ligand structures.
Afterwards, we conducted several hundred ESMACS calcu-
lations on the top ranked ligands based on their docking
and 19 TIES calculations on a selection of ligand pairs.
Note that the ML-based generation of ligand structures accel-
erated the whole HTC process significantly.

We would like to emphasize here that the above results
are only preliminary and do not constitute novel scientific
findings. The above-mentioned calculations were performed
on a small scale for testing and optimizing our workflow.
We have the PB components already working well in iso-
lation. However, we are still optimizing the DeepDriveMD
protocol for application in prospective drug discovery. In
addition, we are yet to realize the fully optimized implemen-
tation of our workflow as a whole with all its components
working in tandem. This paper is about the development of
the infrastructure, so we have not included novel scientific
results in terms of potential drug candidates identified in
this paper. Nevertheless, we have started applying the cur-
rent implementation of our workflow to a large-scale
dataset of millions of orderable compounds. Using our dock-
ing protocols, we identified 10 000 compounds for each of the
four target proteins which were used for performing
ESMACS calculations. The top 500 compounds, based on
their ESMACS ranking, are being further optimized using
DeepDriveMD (as it stands) to identify potentially better
binding conformations that will be used for the second



Table 3. Overview of computing cost for the different calculations in the computing pipeline on Oak Ridge National Laboratory’s Summit supercomputer.

calculation

physical time
required in each
MD simulation
(ns)

no. independent MD
simulations per
ligand–protein
complex

computing time
per calculation
(node-hours)

computing time per
ligand–protein
complex (node-
hours)

used theoretical
performance (TF)

docking — several thousands 0.0001 — —

ESMACS 12 25 — 10 420

TIES 6 65 — 700 29 400
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Figure 3. Correlations between the ESMACS results and docking predictions. Weak or no correlations are obtained for the four protein targets—3CLPro, ADRP,
NSP15 and PLPro—with correlation coefficients of 0.25, −0.06, 0.16 and 0.20, respectively.
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iteration of our workflow. This work is underway, and we
have some very encouraging results with input from exper-
imental colleagues that will be published in due course.

Drug repurposing is another promising approach that
bypasses all the stringent requirements of drug approval
and hence could accelerate the availability of COVID-19
therapeutics. We have, recently, used our workflow to make
a detailed assessment of a set of proposed repurposed
drugs [54]. We obtained binding affinities agreeing well
with experimental measurements and also gained detailed
energetic insight into the nature of drug–protein binding
that would be useful in drug discovery for the target studied.

All calculations were performed on a variety of super-
computers including Leibniz Rechenzentrum’s SuperMUC-
NG, Hartree Centre’s ScafellPike, Oak Ridge National
Laboratory’s Summit and Texas Advanced Computing Cen-
ter’s Frontera. Table 3 summarizes performance and cost
numbers for the calculations on Summit to understand the
overall cost of the presented pipeline. Note that the
ESMACS calculations were accelerated with OpenMM as
MD engine on GPUs. TIES required longer wall-clock times
as only CPUs were employed to obtain the data for table 3.
However, recently we have developed a GPU-enabled ver-
sion of TIES on Summit (using NAMD3 as well as
OpenMM as MD engines), which costs only 11 node-hours
per ligand–protein complex. This would substantially
reduce the computational cost associated with our workflow.
5. ESMACS and TIES applied to COVID-19 on
high-performance computing resources

5.1. ESMACS findings
ESMACS is used at the hit identification and H2L stage of the
drug discovery. The DL-based surrogate model was used to
screen the small molecules in the zinc database, a collection of
commercially available chemical compounds. A high-through-
put docking study was then performed to generate binding
poses of the compounds to the four COVID-19 target proteins
in this work (figure 2). While docking programs are generally
good at pose prediction, they are less effective in predicting
binding free energy of the compounds to the target proteins.
To better rank the binding potentials of the compounds,we per-
formed ESMACS simulations for the top 100 compounds for
each of the selected proteins. The compounds were chosen
from 10 000 docked small molecules, based on their docking
scores from the high-throughput docking study.

Preparation and set-up of the simulations were
implemented using a binding affinity calculator, including
parametrization of the compounds, building simulation-
ready topologies and structures of the complexes and
generating configurations files for the simulations. MD
simulations were performed using two MD engines,
NAMD and OpenMM, on three machines, Frontera,
Summit and SuperMUC-NG. For each replica, energy mini-
mizations were first performed, followed by 2 ns
equilibration. Finally, 10 ns production simulations were run
for each replica. MMPBSA calculations were then performed
for all of the 1000 frames from the 10 ns production runs,
while configurational entropies were calculated using
NMODE on 48 or 56 frames for each replica, depending on
the number of cores per node on the computers used for
NMODE calculations.

For most of the molecular systems studied, about 4–19%
of the compounds show promising binding affinities (cf.
table 4), with free energies more negative than −8.24 kcal
mol−1 (corresponding to a KD value on the nanomolar
scale). Although the distributions of predicted free energies
from independent simulations are non-normal [24,25], the
ensemble-based ESMACS predictions are highly reproduci-
ble, independent of which MD code is used, or on which



Table 4. Number of the most promising compounds for each of the four
proteins investigated. For each protein, the top 100 compounds, chosen from
10 000 docked small molecules, are evaluated by the ESMACS approach. The
number of compounds, which have the most favourable binding free energies
in the ranges corresponding to KD values of 10 nM (−10.98 kcal mol−1),
100 nM (−9.61 kcal mol−1), 1 µM (−8.24 kcal mol−1), are listed.

energy
(kcal mol−1) 3CLPro ADRP NSP15 PLPro

ΔG <−10.98 1 0 3 6

−10.98≤ ΔG <−9.61 2 2 1 8

−9.61≤ ΔG <−8.24 1 4 10 5

ΔG <−8.24 total 4 6 14 19

Table 5. Results from TIES calculations on a set of ligand transformations
studied for ADRP. DDG is the relative binding affinity for a transformation,
that is the change in binding affinity on morphing one ligand into the
other. σ corresponds to the uncertainty associated with the relative
binding affinity predicted by TIES.

transformation DDG (kcal mol−1) σ (kcal mol−1)

a0–a2 1.48 0.60

a0–a4 1.82 0.66

a0–a5 1.14 0.60

a0–a6 3.22 0.44

a0–a7 1.32 0.43

a0–a9 0.25 0.57

a0–a10 1.52 0.70

a0–a41 3.41 0.53

a0–a44 1.18 0.49

a0–a45 −0.46 0.52

a0–a46 2.91 0.70

a0–a47 0.36 0.57

a0–a48 −0.55 0.57

a0–a49 1.84 0.46

a0–a50 0.52 0.64
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supercomputer the simulations are performed. As stated
above, the docking scores are not a good indicator for bind-
ing affinities; the free energies from ESMACS calculations
only show weak correlations with the docking scores
(figure 3). The inclusion of configurational entropy has a neg-
ligible impact on the ranking of the binding free energies. The
ESMACS study shows that the most promising compounds
can be selected more reliably using the ESMACS prediction
than the docking scores.
a1–a42 −0.29 0.82

a1–a43 2.05 1.03

a3–a42 0.49 0.81

a42–a43 4.62 0.82
5.2. TIES findings
TIES is used at the LO stage of drug discovery to hone inter-
actions between protein and ligand so to enhance the binding
potency of selected lead compounds. To demonstrate this
capability, we performed TIES on a set of 19 compound
transformations (that is chemically mutating the ‘original’
compound into a ‘new’ compound) to study the effect of
small structural changes on a compound’s binding potency
with ADRP. The calculated free energy differences show a
non-normal nature, as we have recently reported [24,25].
The ensemble-based TIES approach ensures high-precision
predictions, with uncertainties less than 0.82 kcal mol−1 for
all but one of the calculations (cf. table 5). The relative
binding affinities ðDDGÞ predicted by TIES for these trans-
formations fall between −0.55 and +4.62 kcal mol−1 (cf.
table 5). A positive value indicates a diminished relative bind-
ing potency for the ‘new’ compound, whereas a negative
value means that the transformation studied is favourable.
Twelve out of the 19 transformations studied have
DDG . þ1 suggesting that they all correspond to unfavour-
able structural changes. The remaining seven transformations
have statistically zero value for DDG, which implies that the
corresponding structural modifications do not affect the bind-
ing. It is difficult to predict what structural changes will
improve the binding. Thus, the knowledge of both ‘useful’
as well as ‘rubbish’ transformations is of much value at the
LO stage so as to make informed structural changes. TIES
provides us an excellent tool to do so with confidence. Such
information then informs our ML predictive model about
the desirable as well as undesirable chemical modifications
to be introduced into the selected lead compounds. In this
way, it improves the predictive accuracy of the ML models,
progressively leading to quicker convergence towards the
region of our interest in the huge chemical space.
6. Conclusion
We describe an innovative, iterative and interactive hetero-
geneous workflow that has the potential to accelerate the
existing drug discovery process substantially by coupling
ML with PB methods such that each compensates for the
weaknesses of the other. This workflow requires high-
throughput screening of a large number of small molecules
based on their binding potencies evaluated using various
types of methods. Molecules filtered at one stage are advanced
to the next to be filtered once again using a more accurate and
computationally intensive method. A refined set of lead com-
pounds emerges at the end of this multi-stage process for wet
laboratories studies. With information relating structural fea-
tures to energetics and binding potencies being fed into the
ML model at each stage, it learns how to improve the predic-
tion of the next set of compounds. This iterative process,
alongwith the upstream and downstream flow of information,
allows it to accelerate the sampling of relevant chemical space
much faster than traditional methods. We have demonstrated
the application of our workflow on four SARS-CoV-2 target
proteins. The workflow requires HPC resources for efficient
implementation and a dedicated workflow manager to
handle the large number of heterogeneous computational
tasks on a multitude of supercomputers. We believe that this
hybrid ML–PB approach offers the potential in the long
term—with the rise of exascale, quantum and analogue
processing—to deliver novel pandemic drugs at pandemic
speed.



royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20210018

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 O

ct
ob

er
 2

02
1 
Data accessibility. The models and simulation trajectories were generated
at UCL. Models used for performing PB simulations and results
obtained are available at the following public github repository:
https://github.com/UCL-CCS/ML-PB-Covid-drug. Docking related
codes are available at https://github.com/inspiremd/Model-
generation, whereas ML-related codes and sample files are located on
https://github.com/inspiremd/molecular-active-learning. Sample
scripts for executing our workflow using RCT are also available at
https://github.com/inspiremd/Model-generation.
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