40 research outputs found

    The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism

    Get PDF
    INTRODUCTION: We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS: We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS: Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION: Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent

    Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis

    Get PDF
    Importance: Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown. Objective: To investigate the association of the top 20 AD risk variants with brain amyloidosis. Design, Setting, and Participants: This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005. Main Outcomes and Measures: The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01. Results: This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition (χ2 = 8.38, false discovery rate-corrected P < .001), after apolioprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis (FERMT2 × diagnosis χ2 = 3.53, false discovery rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage. Conclusions and Relevance: This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages

    ImageCLEF 2020: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications

    Get PDF
    This paper presents an overview of the 2020 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2020 in Thessaloniki, Greece. ImageCLEF is an ongoing evaluation initiative (run since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2020, the 18th edition of ImageCLEF will organize four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activity understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with new data and adapted tasks, (iii) a Coral task about segmenting and labeling collections of coral images for 3D modeling, and a new (iv) Web user interface task addressing the problems of detecting and recognizing hand drawn website UIs (User Interfaces) for generating automatic code. The strong participation, with over 235 research groups registering and 63 submitting over 359 runs for the tasks in 2019 shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2020

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Novel Tetrazolium-Based Colorimetric Assay for Helicase nsp13 in SARS-CoV-2

    No full text
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a human pathogenic virus that encodes for a helicase (SC2Hel) that is essential for viral replication. SC2Hel has the ability to unravel dsRNA or dsDNA in an NTP-dependent manner from the 5′ to 3′ directionality. The standard helicase assay from studies involving SARS-CoV and SARS-CoV-2 have relied on the concept of fluorescence resonance energy transfer. Adding to the collection of helicase assays, herein, we have developed a novel tetrazolium-based colorimetric assay system for the detection of ADP that is produced via SC2Hel activity. This SC2Hel assay combines three enzyme-coupled steps involving the ADP-dependent Thermococcus litoralis glucokinase (TlGlcK), Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (LmG6PDH), and Clostridium kluyveri diaphorase (CkDIA). Iodonitrotetrazolium chloride (INT), a colorimetric tetrazolium reagent, was used in the final step of the assay that converted into INT-formazan during reduction. INT-formazan in the assay’s buffered solution at pH 7.6 exhibited an intense colorimetric response at a wavelength maximum of 505 nm. The assay exhibited excellent performance characteristics as it revealed a Z’ factor of 0.87 and it has the potential to be further adopted into high-throughput screening studies for therapeutic drug discovery research

    A highly-sensitive high throughput assay for dynamin's basal GTPase activity.

    No full text
    Clathrin-mediated endocytosis is the major pathway by which cells internalize materials from the external environment. Dynamin, a large multidomain GTPase, is a key regulator of clathrin-mediated endocytosis. It assembles at the necks of invaginated clathrin-coated pits and, through GTP hydrolysis, catalyzes scission and release of clathrin-coated vesicles from the plasma membrane. Several small molecule inhibitors of dynamin's GTPase activity, such as Dynasore and Dyngo-4a, are currently available, although their specificity has been brought into question. Previous screens for these inhibitors measured dynamin's stimulated GTPase activity due to lack of sufficient sensitivity, hence the mechanisms by which they inhibit dynamin are uncertain. We report a highly sensitive fluorescence-based assay capable of detecting dynamin's basal GTPase activity under conditions compatible with high throughput screening. Utilizing this optimized assay, we conducted a pilot screen of 8000 compounds and identified several "hits" that inhibit the basal GTPase activity of dynamin-1. Subsequent dose-response curves were used to validate the activity of these compounds. Interestingly, we found neither Dynasore nor Dyngo-4a inhibited dynamin's basal GTPase activity, although both inhibit assembly-stimulated GTPase activity. This assay provides the basis for a more extensive search for more potent and chemically desirable dynamin inhibitors

    Genetic Barcoding of Marine Leeches (\u3ci\u3eOzobranchus\u3c/i\u3e spp.) from Florida Sea Turtles and Their Divergence in Host Specificity

    No full text
    Ozobranchus margoi and Ozobranchus branchiatus are the only two species of marine turtle leeches (Ozobranchus spp.) known to inhabit the Atlantic coast of the United States and the Gulf of Mexico. In early reports of fibropapillomatosis (FP) in green turtles (Chelonia mydas), O. branchiatus was implicated as a vector in the transmission of Fibropapilloma-associated turtle herpesvirus (FPTHV). It is imperative that the leech species be identified to elucidate the role Ozobranchus spp. may play in disease transmission. In this study,Ozobranchus branchiatus has been identified for the first time on a loggerhead (Caretta caretta) turtle, and the molecular data for this species is now available for the first time in GenBank. Both species of leeches were also found infecting a single C. mydas. Using morphological taxonomy combined with distance- and character-based genetic sequence analyses, this study has established a DNA barcode for both species of Ozobranchus spp. leech and has shown it can be applied successfully to the identification of leeches at earlier stages of development when morphological taxonomy cannot be employed. The results suggest a different haplotype may exist forO. branchiatus leeches found on C. caretta versus C. mydas. Leech cocoon residue collected from a C. mydas was identified using the new method
    corecore