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Key Points

Question

Which of the recently validated Alzheimer disease genetic risk variants are associated with brain
amyloidosis?

Findings

In this study of 977 individuals from the Alzheimer’s Disease Neuroimaging Initiative, the adenosine
triphosphate–binding cassette subfamily A member 7 gene had the strongest association with brain
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amyloidosis after apolipoprotein E ε4. The fermitin family homologue 2 gene had a stage-dependent
association with brain amyloidosis, which was most pronounced in the mild cognitive impairment stage.

Conclusions

This study found an association of AD risk variants with brain amyloidosis.

Abstract

Importance

Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified
more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with
AD remains unknown.

Objective

To investigate the association of the top 20 AD risk variants with brain amyloidosis.

Design, Setting, and Participants

This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals,
496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-
wide association studies and F-florbetapir positron emission tomographic data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and
biomarker study. This ongoing study began in 2005.

Main Outcomes and Measures

The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard
uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex,
and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise
regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster
and significance thresholds at 50 voxels and uncorrected P < .01.

Results

This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%]
female) from the ADNI-1, ADNI-2, and ADNI–Grand Opportunity. The adenosine triphosphate–binding
cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition
(χ  = 8.38, false discovery rate–corrected P < .001), after apolioprotein E ε4. Significant associations were
found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association
with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent
association with brain amyloidosis (FERMT2 × diagnosis χ  = 3.53, false discovery rate–corrected P = .05),
which was most pronounced in the mild cognitive impairment stage.

Conclusions and Relevance

This study found an association of several AD risk variants with brain amyloidosis. The data also suggest
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that AD genes might differentially regulate AD pathologic findings across the disease stages.

Introduction
Sporadic Alzheimer disease (AD) is 70% to 80% heritable. The strongest genetic risk factor for AD is the
apolipoprotein E (APOE) gene (OMIM 107741). The APOE ε4 allele carries the greatest risk through the
reduction of β-amyloid (Aβ) clearance. APOE ε4 carriers have a significantly higher prevalence of
Pittsburgh compound B uptake than noncarriers across all disease stages, including presymptomatic
amyloidosis in cognitively normal control individuals. Peripheral blood apoE protein levels correlate with
amyloid positron emission tomography (PET) binding. These data indicate that imaging phenotypes can
provide meaningful information related to gene function and pathophysiologic findings.

Previous large-scale genome-wide association studies (GWASs) have identified and validated 20 novel AD
genetic risk loci. Few of these loci are in or near genes associated with Aβ aggregation and clearance and
are thought to influence amyloid deposition. For the remainder, the precise disease-associated mechanism
remains unknown.

Several imaging genetics studies have reported associations of some of the AD risk genes with brain
amyloidosis or neurodegeneration. Phosphatidylinositol-binding clathrin assembly protein (PICALM)
(OMIM 603025) rs3851179, bridging integrator 1 (BIN1) (OMIM 601248) rs7561528, complement
component receptor 1 (CR1) rs1408077 (OMIM 120620), adenosine triphosphate–binding cassette
subfamily A member 7 (ABCA7) (OMIM 605414) rs3764650, and membrane-spanning 4-domains,
subfamily A, member 6a (MS4A6A) (OMIM 606548) rs610932 are associated with cortical and
hippocampal atrophy. ABCA7 rs3764650 and rs3752246; BIN1 rs744373; CR1 rs6701713, rs3818361, and
rs6656401; and clusterin (CLU) rs3818361 (OMIM 185430) are associated with amyloid deposition.
Although these studies enrich the imaging genetics field, they also have significant shortcomings. Many of
these research studies have focused on a single variant or a few variants while ignoring the complex
polygenic disease background. In addition, all analyses of gene-endophenotype associations to date have
largely used averaged phenotypic records across all disease stages. Such an approach is justified if the risk
variant has a static or conserved effect during the disease course. However, considering the complicated and
constantly evolving disease pathophysiologic process with early amyloid deposition, later onset of neuronal
degeneration, and variable degree of inflammation, we considered stage-dependent genetic associations.
Furthermore, improved understanding of the polygenetic risk factors for AD could enable personalized risk
assessment, whereas an in-depth characterization of disease-associated mechanism could lead to new
therapeutic avenues.

We report a comprehensive analysis of the associations of all well-validated AD risk variants with brain
amyloidosis. Our goal was to establish their relative contribution to the amyloid burden. We hypothesized
that our multivariable analytic approach would help us more accurately model the probability distribution of
our imaging outcome measure and that we would detect several genetic variants in addition to APOE ε4 that
are associated with brain amyloidosis. In addition, we hypothesized that we might also find stage-dependent
associations with amyloid accumulation.

Methods

Participants

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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database (http://adni.loni.usc.edu). The ADNI is a longitudinal study with approximately 50 sites across the
United States and Canada that was launched in 2003 (http://adni.loni.usc.edu). The goal of the ADNI is to
track the progression of AD by using clinical and cognitive tests, magnetic resonance imaging (MRI),
fludeoxyglucose PET, amyloid PET, cerebrospinal fluid, and blood biomarkers. The institutional review
boards of all sites participating in the ADNI provided review and approval of the ADNI data collection
protocol.

The clinical description of the ADNI cohort has been previously published. Diagnosis of AD was based on
the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association criteria. Individuals with AD dementia were required to have
Mini-Mental State Examination (MMSE) scores between 20 and 26 and a Clinical Dementia Rating (CDR)
score of 0.5 to 1 at baseline. Qualifying individuals with mild cognitive impairment (MCI) had memory
concerns but no significant functional impairment, scored between 24 and 30 on the MMSE, had a global
CDR score of 0.5, had a CDR memory score of 0.5 or greater, and had objective memory impairment on the
Wechsler Memory Scale–Logical Memory II test. The controls had MMSE scores between 24 and 30, had a
global CDR score of 0, and did not meet criteria for MCI and AD. Individuals were excluded if they refused
or were unable to undergo MRI; had other neurologic disorders, active depression, a history of psychiatric
diagnosis, a history of alcohol or other substance dependence within the past 2 years; had less than 6 years
of education; or were not fluent in English or Spanish. The full list of inclusion and exclusion criteria can be
accessed on pages 23 to 29 of the online ADNI protocol (http://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf). Written informed consent was obtained
from all participants, and all data were deidentified.

Gene Variant Selection and Imputation

The ADNI-1 participants were genotyped using the Illumina Human610-Quad BeadChip array (Illumina
Inc), whereas the ADNI-2 and the ADNI–Grand Opportunity (GO) participants were genotyped using the
Illumina HumanOmniExpress BeadChip (Illumina Inc) according to the manufacturer’s protocol. We
focused on the 20 well-established AD risk genes identified and validated in the largest AD GWASs to date.
In addition to the variants reported in these articles, we included all other variants that were previously
associated with brain amyloidosis (eTable 1 in the Supplement), which yielded a total of 36 variants.

Missing genotypes (eTable 2 in the Supplement) were imputed using MACH and minimac in a 2-stage
procedure using the 1000 Genomes project pilot data as a reference panel. Minimac yielded the posterior
probabilities of the imputed genotypes at ungenotyped marker loci for each individual. The threshold to
accept each imputed genotype was set at r  = 0.30.

Nine genes were represented by more than 1 single-nucleotide polymorphism (SNP). Because linkage
disequilibrium (LD) introduces colinearity bias, we performed LD analyses followed by Cohen κ statistics
(eFigure 1 and eTable 3 in the Supplement). When choosing between 2 variants with significant overlap
(high LD and high κ), we retained the variant with least data missingness. Our final number of variants was
thus reduced to 27. ABCA7, BIN1, CLU, CR1, ephrin receptor EphA1 (EPHA1) (OMIM 179610), and
sortilin-related receptor (SORL1) (OMIM 602005) were represented with more than 1 variant in the analyses
(eTable 3 in the Supplement).

Allele frequencies for each gene variant were assessed. Genotypes were collapsed when the minor allele
homozygote frequency was less than 2% as follows: ABCA7 rs3764650 GG/GT vs TT, Cass scaffolding

2

http://adni.loni.usc.edu/
http://www.adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://omim.org/179610
http://omim.org/602005
http://www.ncbi.nlm.nih.gov/snp/3764650


Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885860/?report=printable[6/26/2019 1:05:06 PM]

R Statistical Analyses

Analyses in Imaging Space

protein family member 4 (CASS4) (HGNC 15878) rs7274581 CC/TC vs TT, CLU rs9331949 AG/GG vs
AA, desmoglein 2 (DSG2) (OMIM 125671) rs8093731 TT/TC vs CC, fermitin family homologue 2
FERMT2 (OMIM 607746) rs17125944 CC/TC vs TT, and SORL1 rs112183431 CC/TC vs TT. The
remaining variants were coded by minor allele dosage.

Florbetapir F 18 PET Data Acquisition Protocol and Analyses

The florbetapir F 18 PET acquisition and preprocessing protocols are available at http://www.adni-info.org.
In our main analyses, we used the mean whole-`brain standard uptake volume ratios (SUVRs) from
University of California, Berkeley downloaded from the ADNI database (http://adni.loni.usc.edu). This
variable was obtained by averaging the SUVRs obtained using whole cerebellum as the reference region
across the frontal, anterior-posterior cingulate, lateral-parietal, and lateral-temporal gray matter regions. The
University of California, Berkeley, protocols for F-florbetapir preprocessing, coregistration, and
normalization have been previously described.

To visualize the regional pattern of associations in 3 dimensions, we downloaded all preprocessed F-
florbetapir data from the Laboratory of Neuroimaging Image Data Archive (https://ida.loni.usc.edu). We
aligned the images to the corresponding MRI from the same visit, normalized to MNI space using measures
obtained from the MRI spatial transformation and intensity normalized to the intensity of the whole
cerebellum reference region to create SUVR images, as previously described.

Statistical Analysis

Clinical and demographic characteristics (age, sex, educational level, MMSE, APOE
ε4 genotype, and diagnosis) for each variant were compared using t tests or χ  tests with 2-sided P values as
appropriate. Stepwise multivariable linear regression models with all 27 AD risk variants were performed
first in the pooled sample and second in each diagnostic category using amyloid PET mean SUVR as the
outcome measure. An additional model in the pooled sample using only amyloid-positive individuals
(SUVR>1.17) is available in the eResults in the Supplement. All regression models included age, sex, and
APOE ε4 genotype as covariates. The regression model for the pooled sample was also corrected for
diagnosis. The decision to exclude variables was based on the Akaike information criterion critical P value
threshold of .16. Because we included only previously validated candidate genes, our significance threshold
was set at P < .05. Correction for false discovery rate (FDR) was applied.

All imaging analyses were performed in an exploratory fashion. To explore the
spatial distribution of the associations, we reproduced the final stepwise regression models using voxelwise
regression in Statistical Parametric Mapping 8 (SPM8; Wellcome Department of Cognitive Neuroscience).
The SPM8 models included all variants retained in the R statistical models (including those that were
retained based on the Akaike information criterion) covaried for age, sex, and APOE ε4 genotype. The
pooled model also included diagnosis as a covariate. Because of the exploratory nature of our secondary
results, we allowed a less stringent visualization threshold: voxelwise threshold of P < .01 (uncorrected)
with a minimum cluster size (k) of 50 voxels. We also computed familywise error (FWE) and FDR-
corrected cluster and peak statistics as appropriate.

Results
The study population was composed of participants from the ADNI-1, ADNI-2, and ADNI-GO stages and
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consisted of 322 controls, 496 individuals with MCI, and 159 individuals with AD who had available
GWAS and F-florbetapir PET data (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%]
female). Group comparisons of demographic characteristics and distribution of the genotypes that were
retained in the regression models are given in Table 1. APOE ε4 had significant associations with brain
amyloidosis (eFigure 2 in the Supplement). There were no significant differences in age, sex, educational
level, MMSE score, and APOE ε4 distribution between carriers and noncarriers or by allele dosage for any
of the genotypes except for zinc finger CW-type and PWWP domain containing 1 (ZCWPW1) (HGNC
23486) for which risk allele homozygotes were less educated (P = .02).

Pooled Sample

In the pooled sample, the stepwise linear regression model achieved an R  of 0.35 (95% CI, 0.33-0.37;
P < .001). ABCA7 rs3752246 (χ  = 8.38, FDR-corrected P < .001), EPHA1 rs11771145 (χ  = 4.08, FDR-
corrected P = .03), and PICALM rs3851179 (χ  = 3.67, FDR-corrected P = .04) were significantly associated
with mean SUVR in the pooled sample. Other associations were as follows: ZCPWPW1 rs1476679
(χ  = 2.74, FDR-corrected P = .08), FERMT2 rs17125944 (χ  = 3.63, FDR-corrected P = .08), and protein
tyrosine-kinase 2β (PTK2B) rs28834970 (OMIM 601212) (χ  = 2.52, FDR-corrected P = .01). ABCA7
rs3764650 and CLU rs11136000 were included in the model based on the Akaike selection criterion. A
reduced model that included only age, sex, educational level, and APOE ε4 achieved a reduced R  of 0.31
(95% CI, 0.29-0.33). The between-model difference in R  and reduced R  was 0.038 (95% CI, 0.029-0.047).
Figure 1 and Figure 2 show these associations and Table 2 gives FWE- and FDR-corrected cluster-level
results and within-cluster peak associations for genetic variants identified in our models.

Interaction Analyses

To further test for the presence of a stage-specific association, we conducted a linear regression analysis in
the pooled sample including interaction terms. FERMT2 was the only variant that had a significant
interaction (FERMT2 × diagnosis χ  = 3.53, FDR-corrected P = .05). The effect sizes for the remaining
genes remained unchanged. Figure 3 shows the β-coefficient maps of the main effect size of FERMT2 and
its interaction with diagnosis as well as the FERMT2 effect size within each diagnostic group.

Exploratory Analyses Within Diagnostic Groups

In the control group, the model achieved an R  of 0.17 (95% CI, 0.14-0.21; P < .001; reduced R  = 0.14;
95% CI, 0.11-0.17; R –reduced R  difference = 0.032; 95% CI, 0.015-0.05). Significant associations were
seen for PICALM rs3851179 (χ  = 3.56, FDR-corrected P = .04). The association for ABCA7 rs3764650 was
χ  = 3.16 (FDR-corrected P = .09). ABCA7 rs3752246 was included in the model based on the Akaike
selection criterion.

In the MCI group, the model achieved an R  of 0.3 (95% CI, 0.27-0.32; P < .001; reduced R  = 0.24; 95%
CI, 0.21-0.27; R –reduced R  difference = 0.058; 95% CI, 0.042-0.074). ABCA7 rs3752246 (χ  = 7.22,
FDR-corrected P = .002), EPHA1 rs11771145 (χ  = 3.74, FDR-corrected P = .03), FERMT2 rs17125944
(χ  = 10.38, FDR-corrected P = .002), and SORL1 rs1131497 (χ  = 3.66, FDR-corrected P = .03) were
significantly associated with mean SUVR. The association for ABCA7 rs3764650 was χ  = 2.9 (FDR-
corrected P = .09).

In the dementia group, the model achieved an R  of 0.35 (95% CI, 0.29-0.41; P < .0001; reduced R  = 0.22;
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95% CI, 0.16-0.28; R –reduced R  difference = 0.13; 95% CI, 0.09-0.17). Other associations were as
follows: EPHA1 rs11771145 (χ  = 5.05, FDR-corrected P = .01), ZCWPW1 rs1476679 (χ  = 3.79, FDR-
corrected P = .04), DSG2 rs8093731 (χ  = 3.27, FDR-corrected P = .08), CLU rs9331949 (χ  = 4.09, FDR-
corrected P = .058), and SORL1 rs1131497 (χ  = 2.51, FDR-corrected P = .08).

Figure 1 and Figure 2 present exploratory visualization of these associations, and Table 2 presents the FWE-
and FDR-corrected cluster-level results and within-cluster peak associations for genetic variants identified
in our models.

Discussion
Improved understanding of the polygenetic risk factors that are associated with AD could enable
personalized risk assessment. To our knowledge, this is the first comprehensive analysis of the association
of the top 20 AD risk variants with brain amyloidosis. We were able to confirm the previously reported
association between ABCA7 and brain amyloidosis as described by Shulman et al and Hughes et al. Our
study found that after APOE ε4, ABCA7 has the strongest association with amyloid deposition. We were
unable to confirm the reported associations of CR1 likely because the associations previously reported were
determined using a univariable approach. It is plausible that the previously reported CR1 association is
better accounted for by other AD-related genes, which were not part of the original analysis. We also found
evidence of a stage-dependent gene association of FERMT2 with brain amyloidosis. This is, to our
knowledge, the first report of such an association.

Several genes had associations with brain amyloidosis. ABCA7 encodes a 2146–amino acid ABC family
transporter protein. The ABC protein family is responsible for the transport of a variety of molecules across
cellular membranes, primarily lipids. ABCA7 is expressed in nervous tissue, with the highest expression in
microglia. Loss of function of ABCA7 was associated with increased β-secretase cleavage of amyloid
precursor protein (APP), leading to higher levels of Aβ in vitro and in vivo. A previous ADNI study
analyzed the associations of 15 ABCA7 loci with cerebrospinal fluid Aβ and florbetapir SUVR. Three
variants (rs3752242, rs3752240, and rs4147912) were significantly associated with brain amyloidosis but
not with brain atrophy. One of these 3 SNPs (rs3752242) is in LD with ABCA7 rs3752246, lending support
to our findings. Further evidence of the role of ABCA7 in AD comes from a study that reported one rare
missense variant (rs72973581; minor allele frequency of 4.3%) to confer a significant protection against
AD. In a previous publication, a late but profound effect of ABCA7 was found on neurodegeneration.
Individuals with AD dementia had significant associations of ABCA7 rs3752246 with gray matter density
throughout the brain. Individuals with MCI and controls did not have such an association.

CLU encodes for clusterin, an extracellular chaperone protein that consists of 427 amino acids. CLU is
highly expressed in neurons and ependymal cells. It seems to be involved in a variety of processes
throughout the body, including synaptic maintenance and programmed cell death. Under physiologic
conditions, clusterin reduces aggregation and promotes clearance of Aβ. CLU is highly expressed in the
hippocampi in patients with AD and Pick disease. Clusterin protein levels are also elevated in AD, and its
pattern of distribution correlates positively with that of Aβ42 and Aβ40 in postmortem tissue.

DSG2 encodes a cell adhesion desmosome cadherin protein. DSG2 binds plaque proteins and intermediate
filaments and seems to play a role in inflammation. Although this gene was reported to be associated with
AD risk, a mechanistic explanation of this association has not yet been elucidated. DSG2 is expressed in
epithelial-derived tissues, such as epithelial cell lines, epithelial malignant tumors, and the brain, especially
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the corpus callosum region. We found an association with amyloid deposition later in the disease course,
indicating a late modulatory effect on amyloid deposition.

EPHA1 encodes a 976–amino acid protein that belongs to the EPH family of receptor tyrosine kinases.
EPHA1 plays a role in contact-dependent signaling and nervous system development. EPHA1 is highly
expressed in the cerebral cortex and hippocampus. A previous analysis of ADNI-1 data reported that
EPHA1 rs11771145 is associated with less brain atrophy and higher cerebral metabolic rate in MCI.
Analyses of the cognitively normal imaging subcohort of the Ginkgo Evaluation of Memory study
implicated another EPHA1 allele (rs11767557), which is in LD with ours, to have a negative effect on brain
amyloidosis.

FERMT2 encodes for a 680–amino acid scaffolding extracellular matrix protein that plays a role in cell
adhesions. FERMT2 is expressed in the brain (http://www.proteinatlas.org/ENSG00000073712-
FERMT2/tissue). FERMT2 is upregulated in atherosclerotic plaques, suggesting a possible role in
inflammation and leukocyte extravasation. FERMT2 is a coactivator of β3-integrin—a microglial and
reactive astrocyte marker that plays a role in poststroke brain tissue recovery. FERMT2 has also been
associated with a cognitive decline in AD and modifies tau neurotoxicity in a Drosophila model.

PICALM encodes a 652–amino acid protein that binds to clathrin’s heavy chain and assists in vesicle
assembly and endocytosis. PICALM was recently identified as a risk gene for late-onset AD. PICALM
colocalizes with APP. PICALM knockdown resulted in a reduction in the amount of APP internalized and a
reduction in Aβ generation. In a previous study, PICALM was found to modulate the clearance of tau and
thus autophagy. PICALM has been associated with brain changes in AD. Morgen et al reported a negative
association with prefrontal brain volume and working memory, whereas Biffi et al found associations with
hippocampal amygdalar and white matter lesion volume, as well as with entorhinal, parahippocampal, and
temporal pole cortical thickness.

SORL1 encodes a 2186–amino acid protein from the low-density lipoprotein receptor family. SORL1
readily binds APOE and lipoprotein lipase and localizes to both the Golgi apparatus and the plasma
membrane, where it likely mediates endocytosis. SORL1 plays a role in APP trafficking and recycling.
SORL1 is downregulated in lymphoblasts and cortical pyramidal neurons of patients with AD. The neuronal
SORL1 protein level determines cognitive decline and conversion from MCI to AD. The protein level also
correlates with the levels of the APP soluble products that result from β-secretase cleavage. An SNP in LD
with our variant (rs1133174) has also been linked to brain atrophy in AD.

The ZCWPW1 gene codes for a 648–amino acid protein. ZCWPW1 is considered to be a risk gene for late-
onset AD. Its proposed mechanism of action is through epigenetic regulation of gene expression.

Strengths and Limitations

Several strengths and limitations of our study warrant discussion. One of the major strengths lies in the
careful clinical, biomarker, and genetic characterization of all individuals enrolled in the ADNI. The ADNI
protocol uses unified subject assessment, standardization of all imaging, biofluid and DNA and RNA data
collection and processing, and meticulous data quality control across all study sites. Another strength of the
study is the fairly large sample size that allowed us to achieve enough statistical power to test the
associations of 27 AD-associated risk variants using a polygenic model.

A major limitation of our study is that we only report cross-sectional analyses; thus, we cannot make
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definitive conclusions regarding genetic effects on amyloid deposition over time. From our cross-sectional
observations across the disease continuum, we drew conclusions about early vs late genetic influences on
brain amyloidosis that will need to be further tested using a longitudinal design, which is what we plan to do
next. Another limitation of our work is that the sample size was not big enough to allow us to test for gene-
gene and gene-environment interactions. Last but not least, the ADNI uses rigorous exclusion criteria
typical of clinical trials, rendering the ADNI cohort not representative of the general population, which may
negatively affect the generalizability of our results. Thus, our next steps will be to validate our findings in a
large, independent, longitudinal cohort.

Conclusions
We found an association of genetic variants with brain amyloidosis, the salient pathognomonic feature of
AD. Four of the genetic variants reported here, ABCA7, CLU, EPHA1, and SORL1, have been previously
linked to the amyloidogenic AD pathways. To our knowledge, we are the first to report a stage-specific
association for a genetic variant (ie, FERMT2).

Notes
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Figures and Tables

Table 1.

Demographic Characteristics and Distribution of Genotypes

Variable
Control Group
(n = 322)

MCI Group
(n = 496)

AD Dementia Group
(n = 159)

P
Value

Age, mean (SD), y 75 (6.5) 73 (7.8) 75 (7.8) <.001

Male sex, No. (%) 156 (48.4) 284 (57.3) 95 (59.7) .02

Educational level, mean (SD), y 16.6 (2.6) 16.2 (2.7) 15.9 (2.7) .03

MMSE score, mean (SD) 28.9 (2.1) 27.8 (2.6) 22.8 (2.9) <.001

APOE ε4, 0/1/2, % 72.4/25.8/1.9 53.4/37.3/9.3 32.7/48.4/18.9 <.001

Amyloid positive, No. (%) 85 (26.4) 252 (50.8) 133 (83.6) <.001

ABCA7 rs3752246, % 0/1/2
alleles

69.3/28.3/2.5 67.7/28.4/3.8 64.8/30.8/4.4 .47

ABCA7 rs3764650, % 0/1 or 2
alleles

82.9/17.1 81.3/18.8 83.6/16.4 .72

CLU rs11136000, % 0/1/2
alleles

35.4/50.6/14.0 35.9/49.6/14.5 39.6/44.7/15.7 .91

CLU rs9331949, % 0/1 or 2
alleles

94.7/5.3 96.6/3.4 94.3/5.7 .32

DSG2 rs8093731, % 0/1 or 2
alleles

97.8/2.2 98.0/2.0 98.1/1.9 .98

EPHA1 rs11771145, % 0/1/2
alleles

44.7/43.8/11.5 44.8/42.3/12.9 33.3/49.7/17.0 .02

FERMT2 rs17125944, % 0/1 or
2 alleles

82.9/17.1 85.1/14.9 81.8/18.2 .53

PICALM rs3851179, % 0/1/2
alleles

40.4/46.6/13.0 42.3/45.2/12.5 42.8/48.4/8.8 .59

PTK2B rs28834970, % 0/1/2
alleles

42.2/41.9/15.8 43.1/42.7/14.1 39.0/46.5/14.5 .74

SORL1 rs1131497, % 0/1/2
alleles

33.5/47.8/18.6 31.9/52.0/16.1 38.4/48.4/13.2 .26

ZCWPW1 rs1476679, % 0/1/2
alleles

50.6/40.1/9.3 52.4/39.5/8.1 54.7/37.7/7.5 .62
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Abbreviation: MMSE, Mini-Mental State Examination.

Figure 1.

Association of Alzheimer Disease Risk Genes With Brain Amyloidosis in the Pooled Sample

Images were visualized using P < .01 (uncorrected) and cluster size (k) of 50 voxels. Scale indicates T values.

Figure 2.
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Association of Alzheimer Disease Risk Genes With Brain Amyloidosis in the Normal Control, Mild Cognitive
Impairment, and Dementia Groups

Images were visualized using P < .01 (uncorrected) and cluster size (k) of 50 voxels. Scale indicates T values.

Table 2.

FWE- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects

Gene
Variant

Cluster Level Peak Level

FWE-
Corrected
P Value

FDR-
Corrected
q Value

Cluster
Size,
Voxels

Uncorrected
P Value

T Uncorrected
P Value

Talairach
Coordinates,
x/y/z

Brain
Region

Pooled Sample

ABCA7 <.001 <0.0001 96 687 <.001 6.01 <.001 −32/−8/−44 Left

a
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rs3752246 inferior
temporal
gyrus
(BA20)

CLU
rs11136000

.07 0.101 1246 .002 3.64 <.001 4/−48/0 Right
cerebellum

EPHA1
rs11771145

.03 0.033 1484 .001 4.18 <.001 −22/−72/48 Left
precuneus
(BA7)

.03 0.033 1520 .001 3.57 <.001 44/−82/0 Right
middle
occipital
gyrus
(BA18)

FERMT2
rs17125944

.01 0.020 1871 <.001 4.48 <.001 −28/6/−44 Left
superior
temporal
gyrus
(BA38)

ZCWPW1
rs1476679

.047 0.082 1380 .001 3.57 <.001 10/18/−26 Right
rectal
gyrus
(BA11)

Normal Control Group

ABCA7
rs3752246

.006 0.008 1914 <.001 4.14 <.001 −22/66/8 Left
middle

   

 

Open in a separate window

Abbreviations: BA, Brodmann area; FDR, false discovery rate; FWE, familywise error.

In the pooled sample, ABCA7 rs3764650, PICALM rs3851179, and PTK2B rs28834970 had no significant clusters;
in the control group, ABCA7 rs3764650 and PICALM rs3851179 had no significant clusters; and in the dementia
group, EPHA1 rs11771145 and SORL1 rs1131497 had no significant clusters.

Figure 3.

a
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β-Coefficient Maps of the Main Association of FERMT2 and Its Interaction With Diagnosis and the Association of
FERMT2 Within Each Diagnostic Group

Main association of FERMT2 with brain amyloidosis (A), its interaction with diagnosis (B), and the association of FERMT2
with brain amyloidosis in each diagnostic group (C) displayed using Statistical Parametric Mapping 8.
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