375 research outputs found

    Etude du milieu terrestre des atolls de la Polynésie française : caractéristiques et potentialités agricoles

    Get PDF
    Cet article présente les principales caractéristiques des sols des atolls et des récifs de la Polynésie française. Les auteurs discutent également les problÚmes de la mise en valeur des sols sur ces ßlots coralliens et illustrent les différentes techniques culturales utilisée

    From Strong to Weak Coupling Regime in a Single GaN Microwire up to Room Temperature

    Full text link
    Large bandgap semiconductor microwires constitute a very advantageous alternative to planar microcavities in the context of room temperature strong coupling regime between exciton and light. In this work we demonstrate that in a GaN microwire, the strong coupling regime is achieved up to room temperature with a large Rabi splitting of 125 meV never achieved before in a Nitride-based photonic nanostructure. The demonstration relies on a method which doesn't require any knowledge \'a priori on the photonic eigenmodes energy in the microwire, i.e. the details of the microwire cross-section shape. Moreover, using a heavily doped segment within the same microwire, we confirm experimentally that free excitons provide the oscillator strength for this strong coupling regime. The measured Rabi splitting to linewidth ratio of 15 matches state of the art planar Nitride-based microcavities, in spite of a much simpler design and a less demanding fabrication process. These results show that GaN microwires constitute a simpler and promising system to achieve electrically pumped lasing in the strong coupling regime.Comment: 14 pages, 4 figure

    Christmas Island lagoonal lakes, models for the deposition of carbonate–evaporite–organic laminated sediments

    No full text
    The atoll of Christmas Island (now known as Kiritimati) in the Kiribati Republic (Central Pacific) lies at about 2°N in the intertropical convergence zone. Much of the surface area of the atoll (ca. 360 km2) is occupied by numerous lakes in which carbonate, evaporite (calcium sulfate, halite) and organic layers are deposited. Observations suggest that deposition of these different laminae is controlled by climatic and biologic factors. It is thought that periodic climatic variations, such as El Niño-Southern Oscillations (ENSO) events which bring heavy rainfall to the atoll, result in the succession of the precipitation of carbonate minerals (during periods after dilution of hypersaline waters by heavy rains), followed by evaporitic minerals (carbonate, calcium sulfate, halite) when salinity increases through evaporation. Thick (up to 5 cm) microbial (essentially cyanobacterial) mats develop continuously on the lake bottom surfaces providing the sediment with an important (total organic carbon 2–5%) organic contribution in the form of an internal, geometrically structured, network in which the authigenic minerals precipitate. The high bioproductivity of these microbial populations is reflected in low ÎŽ13C values of sedimentary organic carbon (−14 to −17‰), interpreted as being the result of high atmospheric CO2 demand (Geochim. Cosmochim. Acta, 56 (1992) 335). The well-laminated organic layers present in the sediment profile result from the death and burial of microbial populations at the time of severe climatic events (storms, heavy rainfall). These lagoonal lakes provide a model for the deposition of carbonate and organic matter in an evaporitic environment. The high ratio of deposited carbonate vs. sulfate+chloride, when compared to low ratio in evaporitic salinas, results from both a lack of limitation of calcium, magnesium and carbonate ions (in a carbonate reef environment) and active processes of high-Mg calcite precipitation (organomineralization)

    Do migrating cells need a nucleus?

    Get PDF
    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org /10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses

    Eine „dienende Rolle“ fĂŒr den Finanzsektor? Nicht dienen, sondern funktionieren!

    Get PDF
    The image is undisputed in the political debate that the function of the financial sector is to "play servant" to the real economy, but the consequences derived from this debate are controversial. Clearer is the academic concept to restrict the functions of the financial sector deliberately. But such restriction is hardly convincing from the different persepectives of functionality. Because of this indetermination and, respectively, restriction, a "servant role" is apparently inappropriate as a useful yardstick for reorienting the financial sector. In line with this image, it would certainly be possible to improve crisis prevention, but at the price of cuts in important functions so that a "sevant role" as a concept of crisis prevention would not be desirable either

    A human septin octamer complex sensitive to membrane curvature drives membrane deformation with a specific mesh-like organization

    Get PDF
    Septins are cytoskeletal proteins interacting with the inner plasma membrane and other cytoskeletal partners. Being key in membrane remodeling processes, they often localize at specific micrometric curvatures. To analyze the behavior of human septins at the membrane and decouple their role from other partners, we used a combination of bottom-up in vitro methods. We assayed their ultrastructural organization, their curvature sensitivity, as well as their role in membrane reshaping. On membranes, human septins organize into a two-layered mesh of orthogonal filaments, instead of generating parallel sheets of filaments observed for budding yeast septins. This peculiar mesh organization is sensitive to micrometric curvature and drives membrane reshaping as well. The observed membrane deformations together with the filamentous organization are recapitulated in a coarse-grained computed simulation to understand their mechanisms. Our results highlight the specific organization and behavior of animal septins at the membrane as opposed to those of fungal proteins

    Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity

    Get PDF
    We report progress in the development of tunable room temperature triggered single photon sources based on single nitrogen-vacancy (NV) centres in nanodiamond coupled to open access optical micro-cavities. The feeding of fluorescence from an NV centre into the cavity mode increases the spectral density of the emission and results in an output stream of triggered single photons with spectral line width of order 1 nm, tunable in the range 640 - 700 nm. We record single photon purities exceeding 96% and estimated device efficiencies up to 3%. We compare performance using plano-concave microcavities with radii of curvature from 25 mu m to 4 mu m and show that up to 17% of the total emission is fed into the TEM00 mode. Pulsed Hanbury-Brown Twiss (HBT) interferometry shows that an improvement in single photon purity is facilitated due to the increased spectral density. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License
    • 

    corecore