254 research outputs found

    Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of Cyber-Physical Systems

    Get PDF
    The main purpose of this dissertation is to define and solve problems on optimal sensing and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term that was introduced recently to define the increasing complexity of the interactions between computational hardwares and their physical environments. The problem of designing the ``cyber\u27\u27 part may not be trivial but can be solved from scratch. However, the ``physical\u27\u27 part, usually a natural physical process, is inherently given and has to be identified in order to propose an appropriate ``cyber\u27\u27 part to be adopted. Therefore, one of the first steps in designing a CPS is to identify its ``physical\u27\u27 part. The ``physical\u27\u27 part can belong to a large array of system classes. Among the possible candidates, we focus our interest on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial Differential Equations (PDE). DPSs are by nature very challenging to observe as their states are distributed throughout the spatial domain of interest. Therefore, systematic approaches have to be developed to obtain the optimal locations of sensors to optimally estimate the parameters of a given DPS. In this dissertation, we first review the recent methods from the literature as the foundations of our contributions. Then, we define new research problems within the above optimal parameter estimation framework. Two different yet important problems considered are the optimal mobile sensor trajectory planning and the accuracy effects and allocation of heterogeneous sensors. Under the remote sensing setting, we are able to determine the optimal trajectories of remote sensors. The problem of optimal robust estimation is then introduced and solved using an interlaced ``online\u27\u27 or ``real-time\u27\u27 scheme. Actuation policies are introduced into the framework to improve the estimation by providing the best stimulation of the DPS for optimal parameter identification, where trajectories of both sensors and actuators are optimized simultaneously. We also introduce a new methodology to solving fractional-order optimal control problems, with which we demonstrate that we can solve optimal sensing policy problems when sensors move in complex media, displaying fractional dynamics. We consider and solve the problem of optimal scale reconciliation using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)-based personal remote sensing. Finally, to provide the reader with all the necessary background, the appendices contain important concepts and theorems from the literature as well as the Matlab codes used to numerically solve some of the described problems

    Optimal Real-Time Estimation Strategies for a Class of Cyber-Physical Systems Using Networked Mobile Sensors and Actuators

    Get PDF
    The combination of physical systems and networks has brought to light a new generation of engineered systems: Cyber-Physical Systems (CPS) (CPS, 2008). CPS is defined in (Chen, 2008) in the following way: ``Computational thinking and integration of computation around the physical dynamic systems form Cyber-Physical Systems (CPS) where sensing, decision, actuation, computation, networking and physical processes are mixed". CPS is foreseen to become a highly researched area in the years to come with its own conferences (NSF, 2006; WCPS, 2008) and journals, e.g. (Gill et al, 2008). ``Applications of CPS arguably have the potential to dwarf the 20-th century IT revolution" (Lee, 2007). CPS applications can be found in medical devices and systems, patient monitoring devices, automotive and air traffic control, advanced automotive systems, process control, environmental monitoring, avionics, instrumentation, oil refineries, water usage control, cooperative robotics, manufacturing control, buildings, etc. The first step when considering a CPS is to determine the dynamics of its ``physical" part, i.e. the environment in which the sensors and actuators are going to operate. First by defining a matching mathematical model, and then by retrieving the values of the parameters of this model. In this paper, the parameter estimation process constitutes a CPS in itself as we are using a mobile actuator-sensor network for that purpose. The ``modeling-analysis-design (MAD)'' process in dynamic systems control is fundamental in control engineering practice. In both physical and mathematical modelling, the parameter estimation is essential in successful control designs. A precise parameter estimation depends not only on ``relevant'' measurements and observations, but also on ``rich'' excitation of the system. These are all known concepts in system identification for finite dimensional systems (Ljung, 2008). In control engineering practice, it is very common to estimate the parameters of a system given a mathematical model. Using observations or measurements, one can parameterize the model using different techniques. Sometimes, when the system to be modelled is spatially and temporally dynamic (i.e. the states depend on both time and space), commo

    In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath

    Get PDF
    The myelin sheath that covers a large amount of neurons is critical for their homeostasis, and myelinating glia mitochondria have recently been shown to be essential for neuron survival. However morphological and physiological properties of these organelles remain elusive. Here we report a method to analyze mitochondrial dynamics and morphology in myelinating Schwann cells of living mice using viral transduction and time-lapse multiphoton microscopy. We describe the distribution, shape, size and dynamics of mitochondria in live cells. We also report mitochondrial alterations in Opa1(delTTAG) mutant mice cells at presymptomatic stages, suggesting that mitochondrial defects in myelin contribute to OPA1 related neuropathy and represent a biomarker for the disease

    Flutter atrial chez 2 chevaux : présentation clinique et évaluation cardiaque

    Get PDF

    Optimal Trajectories of Mobile Remote Sensors for Parameter Estimation in Distributed Cyber-Physical Systems

    Get PDF
    Abstract-In this paper, we present a method to obtain the optimal trajectories of a team of robots monitoring a distributed parameter system located in a different domain. The mobile robots are equipped with remote sensors capable of measuring the considered system's state from a separate space. The purpose of trajectory planning of the team of robots is to obtain measurements so as to estimate the parameters of the considered system. From a given set of partial differential equation the dynamics of the distributed system's behavior, the optimal path and steering of the team of mobile nodes is obtained by minimizing the D-optimality criteria associated with the expected accuracy of the obtained parameter values. From this original problem, an optimal control problem is derived with the advantage of being solvable by readily available commercial softwares. The method is illustrated on a diffusive distributed systems

    Ensembles mobiliers, industriels, techniques. Connaissance, protection, conservation, présentation au public

    Get PDF
    Car, en fin de compte, le but d’un ameublement harmonieux est bien, comme on vient de le montrer, de reflĂ©ter l’homme, mais de le reflĂ©ter dans son essence idĂ©ale, ce qui est une exaltation du moi. C’est pourquoi, plus encore peut-ĂȘtre que la peinture, la sculpture, et mĂȘme l’architecture, le mobilier rĂ©vĂšle l’esprit d’une Ă©poque...Mario Praz. Histoire de la dĂ©coration d’intĂ©rieur : La philosophie de l’ameublement [1964], trad. fr. Londres/Paris : Thames et Hudson, 1994, p. 20. Le 7 juillet 2..

    Distribution of monocarboxylate transporters in the peripheral nervous system suggests putative roles in lactate shuttling and myelination.

    Get PDF
    Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs
    • 

    corecore