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Abstract— In this paper, we present a method to obtain
the optimal trajectories of a team of robots monitoring a
distributed parameter system located in a different domain.
The mobile robots are equipped with remote sensors capable of
measuring the considered system’s state from a separate space.
The purpose of trajectory planning of the team of robots is
to obtain measurements so as to estimate the parameters of
the considered system. From a given set of partial differential
equation the dynamics of the distributed system’s behavior,
the optimal path and steering of the team of mobile nodes
is obtained by minimizing the D-optimality criteria associated
with the expected accuracy of the obtained parameter values.
From this original problem, an optimal control problem is de-
rived with the advantage of being solvable by readily available
commercial softwares. The method is illustrated on a diffusive
distributed systems.

I. INTRODUCTION

A. Literature Review

The juxtaposition of “real-life” physical systems and com-

munication networks has brought to light a new generation

of engineered systems: Cyber-Physical Systems (CPS) [1].

A definition of CPS was given in [2] in the following

way: “Computational thinking and integration of computa-

tion around the physical dynamic systems form CPS where

sensing, decision, actuation, computation, networking and

physical processes are mixed”. Given its recent emergence

and wide array of applications, the topic and study of CPS

is believed to become a highly researched area in the years

to come including its conferences [3][4] and journals [5].

“Applications of CPS arguably have the potential to dwarf the

20-th century IT revolution” [6]. The application of CPS are

numerous and include medical devices and systems, patient

monitoring devices, automotive and air traffic control, ad-

vanced automotive systems, process control, environmental

monitoring, avionics, instrumentation, oil refineries, water

usage control, cooperative robotics, manufacturing control,

buildings, etc.

Within these potential applications, the one we are inter-

ested in belongs to the environmental monitoring category.

It is believed that applied remote sensing can help determine

the evapotranspiration of a given agricultural field and hence

give improved information on crop condition and yield
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to better irrigation control. In the same vein of research,

remote sensing can give information correlated to the water

stress level of the crops [7]. Remote sensing could provide

important information to the farmers or even be use as

feedback for a global irrigation control algorithm. Our on-

going project consist of developing unmanned air vehicles

(UAVs) equipped with aerial imagers to develop such control

algorithm [8].

In the considered framework, the system is a distributed

parameter system (DPS), that is to say the states are evolving

along both time and space. Consequently, the traditional

finite-dimensional input-output relationships have to be put

aside and partial differential equations (PDEs) have to be

used to model the system. This increased complexity of he

system leads to challenging problems. Whereas the location

of sensors is rather straightforward when considering a finite

dimensional system, determining where measurement should

be done is not a straightforward task in a DPS. One needs

to consider the location of the sensors so that the gathered

information best helps the parameter estimation. Therefore,

it is a necessity to develop systematic approaches in order

to increase the efficiency of PDE parameter estimation tech-

niques.

The problem of sensor location in DPS has been stud-

ied before as one can find in review paper [9]. However,

most publications are limited to stationary sensors. Newer

approaches take advantage of spatially-movable sensors be-

cause when sensors are not assigned to fixed positions, the

optimality is not achieved in the average sense but instead

allow the sensors to follow the optimal location a given time

moment. This leads to the tracking of the best information

about the parameters to be identified. This leads to improved

performance in parameter estimation as illustrated in [9].

The literature of mobile sensor trajectory planning in CPS

is growing. Even though few approaches have been intro-

duced, a large collection of problems have been considered.

In [10], Rafajówicz solves optimal path planning problem

using the determinant of the Fisher Information Matrix (FIM)

associated with the parameters he wants to estimate. His

formulation leads to results consisting in an optimal time-

dependent measure rather than a pure sensor trajectory. In [9]

and [11], Uciński reformulates the problem of time-optimal

path planning into a state-constrained optimal-control one

which allows the addition of different constraints on the

dynamics of the sensor. Increased observability of the system

is considered in [12]. In [13], Uciński tries to properly

formulate and solve the time-optimal problem for moving

sensors which observe the state of a DPS in order to
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estimate its parameters’ value. In [14], [15], the detection of

a moving source within of distributed system is considered

for a sensor network. In [16], the state estimation of a

distributed system is considered; mobile sensors steering

policy is decided so as to improve the state estimate. In [17],

both source detection and process estimation are combined

into a single framework. In [18], the Turing’s Measure of

Conditioning is used to obtain optimal sensor trajectories.

The problem is solved for heterogeneous sensors (i.e. with

different measurement accuracies) in [19]. Limited power

resource is considered in [20]. In [21], Demetriou considers

the optimal trajectories of mobile sensors in unison so as to

improve state estimation. In [22], a so-called “closed-loop”

scheme was considered for the case where initial estimates of

the system’s parameters were inaccurate. This paper opened a

window towards networking considerations as computations

were not prior to the experiment anymore but “on-line”.

For the first time, actuators trajectories were considered and

optimized in [23] for known sensor trajectories. In [24],

both actuators and sensors trajectories were optimized for

improved performance.

So far, the literature has limited the movements of the

sensors within the domain of the distributed parameter sys-

tem. However, with the emergence of remote sensing, we

should extend the framework to mirror this new way of

taking measurements. Our main motivation comes from our

own projects [25]. With the help of small UAVs, we are

capable of taking pictures and obtain information on the

amount of soil-moisture on a specific plot of land. Such

UAVs could also be used to gather information on soil

dynamics and help for better prediction of soil-moisture.

However, the computation required for solving this complex

problem (three dimensional PDE, imprecise knowledge of

initial conditions, complex nonlinear UAV dynamics) does

not allow us to yet to implement to proposed methodology

to an actual application. This approach is instead reflected

in an illustrative example used later in this paper.

B. Problem Formulation for PDE Parameter Estimation

Consider a distributed parameter system (DPS) described

by the partial differential equation

∂y

∂t
= F

(
x, t, y,θ

)
in Ωsys × T , (1)

with initial and boundary conditions

B(x, t, y,θ) = 0 on Γsys × T, (2)

y = y0 in Ωsys × {t = 0}, (3)

where y(x, t) stands for the scalar state at a spatial point x ∈
Ω̄sys ⊂ R

n and time instant t ∈ T̄ . Ωsys ⊂ R
n is a bounded

spatial domain with sufficiently smooth boundary Γ, and T =
(0, tf ] is a bounded time interval. F is assumed to be a

known well-posed, possibly nonlinear, differential operator

which includes first- and second-order spatial derivatives and

include terms for forcing inputs. B is an known operator

acting on the boundary Γ and y0 = y0(x) is a given function.

We assume that the state y depends on the parameter

vector θ ∈ R
m of unknown parameters to be determined

from measurements made by N moving sensors. Those

mobile sensors are assumed to ambulate in a spatial domain

Ωsens 6= Ωsys. The sensors are able to remotely take

measurements in Ωmeas ⊂ Ωsys over the observation horizon

T . We call xj
s : T → Ωsens the position/trajectory of the

j-th sensor, where Ωsens is a compact set representing the

domain where the sensors can move. We call zj
s : T → Ω the

collection of measurements in Ωmeas where the j-th sensor

is observing. We assume that a function f : Ωsens → Ωmeas

linking the position of the sensor and measurements exists.

The observations for the j-th sensor are assumed to be of

the form

zj
s(t) = y(f(xj

s(t)), t) (4)

+ε(f(xj
s(t)), t), t ∈ T, j = 1, . . . , N,

where y is the vector containing the values of the state y at

the different locations f(xj
s(t)) and ε represents the mea-

surement noise assumed to be white, zero-mean, Gaussian

and spatial uncorrelated with the following statistics

E
{
ε(f(xj

s(t)), t)ε(f(x
i
s(t

′)), t′)
}
= σ2δjiδ(t− t′), (5)

where σ2 stands for the standard deviation of the measure-

ment noise, δij and δ( · ) are the Kronecker and Dirac delta

functions, respectively.

With the above settings, similar to [9], the optimal param-

eter estimation problem is formulated as follows: Given the

model (1)–(3) and the measurements zj
s from the sensors xj

s,

j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being

the set of admissible parameters) of the parameter vector

which minimizes the generalized output least-squares fit-to-

data functional given by

θ̂ = arg min
ϑ∈Θad

N∑

j=1

∫

T

[
zj
s(t)− ŷ(f(xj

s(t)), t;ϑ)
]2

dt (6)

where ŷ is the solution of (1)–(3) with θ replaced by ϑ.

By observing (6), it is possible to foresee that the pa-

rameter estimate θ̂ depends on the number of sensors N
and the mobile sensor trajectories xj

s. This fact triggered the

research on the topic and explains why the literature so far

focused on optimizing both the number of sensors and their

trajectories. The intent was to select these design variables so

as to produce best estimates of the system parameters after

performing the actual experiment.

Since our approach is based on the methodology devel-

oped for optimal sensor location, we display it here as an

introduction to the theory from [9] and [26]. In order to

achieve optimal sensor location, some quality measure of

sensor configurations based on the accuracy of the parameter

estimates obtained from the observations is required. Such

a measure is usually related to the concept of the Fisher

Information Matrix (FIM), which is frequently referred to in

the theory of optimal experimental design for lumped param-

eter systems [27]. Its inverse constitutes an approximation

of the covariance matrix for the estimate of θ. Given the
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assumed statistics of the measurement noise, the FIM has

the following representation [9]:

M =

N∑

j=1

∫

T

g(f(xj
s(t)), t)g

T(f(xj
s(t)), t) dt, (7)

where

g(x, t) = ∇ϑy(x, t;ϑ)
∣∣
ϑ=θ0 (8)

denotes the vector of the so-called sensitivity coefficients, θ0

being a prior estimate to the unknown parameter vector θ

[11], [9].

However, the FIM can hardly be used in an optimization

as is. Therefore, it is necessary to maximize some scalar

function Ψ of the information matrix to obtain the optimal

experiment setup. The introduction of the scalar criterion

allows us to pose the sensor location problem as an opti-

mization problem. Several choices for such a function can

be found in the literature [28], [27] and the most popular

one is the D-optimality criterion

Ψ[M ] = − log det(M). (9)

Its use yields the minimal volume of the uncertainty ellipsoid

for the estimates of the parameters. In this paper, only the

D-optimality criterion is considered.

II. OPTIMAL MEASUREMENT PROBLEM

A. Mobile Sensor Model

1) Sensor Dynamics: We assume that the sensing devices

are equipped on vehicles whose dynamics can be described

by the following differential equation

ẋj
s(t) = fs(x

j
s(t),u

j
s(t)) a.e. on T , xj

s(0) = x
j
s0.

(10)

With this nomenclature, the function fs : R
N×R

rs → R
N

has to be continuously differentiable, the vector x
j
s0 ∈ R

N

represents the initial disposition of the j-th sensor, and us :
T → R

rs is a measurable control function satisfying the

following inequality

usl ≤ us(t) ≤ usu a.e. on T, (11)

for some known constant vectors usl and usu. Let us

introduce,

s(t) =
(
x1
s(t),x

2
s(t), . . . ,x

N
s (t)

)T
, (12)

where xj
s : T → Ωsens is the trajectory of the j-th sensor.

Additionally, we define s(0) = s0.

2) Mobility Constrains: We assume that all the mobile

nodes equipped with sensors are confined within an admissi-

ble region ΩsensAD (a given compact set) where the sensors

are allowed to travel. ΩsensAD can be conveniently defined

as

ΩsensAD = {x ∈ Ωsens : bsi(x) = 0, i = 1, ..., I}, (13)

where the bsi functions are known continuously differen-

tiable functions. That is to say that the following constraints

have to be satisfied:

hij(s(t)) = bsi(x
j
s(t)) ≤ 0, ∀t ∈ T, (14)

where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we

reformulate the conditions described in (14) in the following

way

γsl(s(t)) ≤ 0, ∀t ∈ T, (15)

where γsl, l = 1, ..., ν tally with (14), ν = I ×N . It would

be possible to consider additional constraints on the path of

the vehicles such as specific dynamics, collision avoidance,

communication range maintenance and any other conceivable

constrains.

3) Remote Sensing Constraints: As mentioned earlier,

we assume that the sensors are capable of taking measure-

ments in Ωsys, while being physically in Ωsens. For that

purpose, we introduce a remote sensing function f giving

the location(s) of the measurement based on the location

of the sensor. Similarly to path constraints, we assume that

the remote sensing is only allowed within an admissible

region ΩmeasAD where the measurements are possible. The

constraints on remote sensing can be defined as constraints

on measurement location and then transformed into mobility

ones. We can define ΩmeasAD as

ΩmeasAD = {x ∈ Ωsens : bmi(f(x)) = 0, i = 1, ..., I},
(16)

where the bmi functions have the same properties as bsi.
Similarly, we can regroup the remote sensing constraints into

an inequality

γml(s(t)) ≤ 0, ∀t ∈ T. (17)

Remark: For our project [8], UAVs equipped with mul-

tispectral imagers are used for collecting aerial images of

agricultural fields. The purpose of remote sensing is to gather

data about the ground’s surface while avoiding to come in

contact with it. Multispectral imagers can generate an image

for each different wavelength bands ranging from visible

spectra to infra-red or thermal based for various applications.

Having such a diverse and wide range of wavelengths allow

for a better analysis of the ground’s surface properties. Under

such circumstances, the domain where the sensors ambulate

(space), is different from the domain where measurements

are taken (ground). The constraints on mobility (such as

collision avoidance between UAVs and/or environment) are

different from the constraints on remote sensing (such as

maintaining the images within the domain of interest that is

the crop field).

B. Problem Definition

The purpose of the optimal measurement problem is to

determine the forces (controls) applied to each vehicle, which

minimize the design criterion Ψ(·) defined on the FIMs

of the form (7), which are determined unequivocally by

the corresponding trajectories, subject to constraints on the

magnitude of the controls and induced state constraints. To

increase the degree of optimality, our approach considers s0
as a control parameter vector to be optimized in addition to

the control function us.

Given the above formulation we can cast the optimal

measurement policy problem as the following optimization
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problem: Find the pair (s0,us) which minimizes

J (s0,us) = Ψ [M(s)] (18)

over the set of feasible pairs

P = {(s0,us) |u : T → R
r is measurable, (19)

usl ≤ us(t) ≤ usu a.e. on T , s0 ∈ Ωsens} ,

subject to the constraint (15) and (17).

The solution to this problem can hardly have an analytical

solution. It is therefore necessary to rely on numerical

techniques to solve the problem. A wide variety of techniques

are available [29]. However, the problem can be reformulated

as a classical Mayer problem where the performance index

is defined only via terminal values of state variables.

III. OPTIMAL CONTROL FORMULATION

In this section, the problem is converted into a canonical

optimal control one making possible the use of existing

optimal control problems solvers.

To simplify our presentation, we define the function svec

: Sm → R
m(m+1)/2, where S

m denotes the subspace of all

symmetric matrices in R
m×m that takes the lower triangular

part (the elements only on the main diagonal and below) of

a symmetric matrix A and stacks them into a vector a:

a = svec(A) (20)

= col[A11, A21, . . . , Am1, A22, ...

A32, . . . , Am2, . . . , Amm]. (21)

Reciprocally, let A = Smat(a) be the symmetric matrix such

that svec(Smat(a)) = a for any a ∈ R
m(m+1)/2.

Consider the matrix-valued function

Π(s(t), t) =
N∑

j=1

g(f(xj
s(t)), t)g

T (f(xj
s(t)), t). (22)

Setting r : T → R
m(m+1)/2 as the solution of the differential

equations

ṙ(t) = svec(Π(s(t), t)), r(0) = 0, (23)

we obtain

M(s) = Smat(r(tf )), (24)

i.e., minimization of Φ[M(s)] thus reduces to minimization

of a function of the terminal value of the solution to (23).

Introducing an augmented state vector

q(t) =

[
s(t)
r(t)

]
, (25)

we obtain

q0 = q(0) =

[
s0
0

]
. (26)

Then the equivalent canonical optimal control problem con-

sists in finding a pair (q0,us) ∈ P̄ which minimizes the

performance index

J̄(q0,us) = φ(q(tf )) = Φ[Smat(r(tf ))] (27)

subject to




q̇(t) = ϕ(q(t),us(t), t)
q(0) = q0

γ̄sl(q(t)) ≤ 0
γ̄ml(q(t)) ≤ 0

(28)

where

P̄ = {(q0,u) |u : T → R
r is measurable, (29)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩM
sens

}
,

and

ϕ(q,u, t) =

[
f(s(t),u(t))

svec(Π(s(t), t))

]
, (30)

γ̄sl(q(t)) = γsl(s(t)) (31)

γ̄ml(q(t)) = γml(s(t)). (32)

The problem formulated above in normal form can be

solved with readily available software packages for solving

dynamic optimization problems in a numerical way. Like

in most of our work, we use RIOTS 95, which is designed

as a MATLAB toolbox written mostly in C and runs under

Windows 98/2000/XP/vista and Linux. The theory behind

RIOTS 95 and its numerical methods can be found in [30].

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we use a demonstrative example to illus-

trate the method developed earlier. The system we consider

here consists of the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + 20exp(−50(x1 − t)2) (33)

for x = [x1 x2]
T ∈ Ωsys = (0, 1)2 and t ∈ [0, 1], subject to

homogeneous zero initial and Dirichlet boundary conditions.

The spatial distribution of the diffusion coefficient is assumed

to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (34)

In this example, the values of the diffusion coefficient param-

eters (which we want to estimate) are θ1 = 0.1, θ2 = −0.05
and θ03 = 0.2. They are assumed to be known prior to the

experiment. The dynamics of the mobile sensors follow the

given dynamical model

ẋs
j(t) = uj

s(t), xj
s(0) = x

j
s0, (35)

for x = [x1 x2 x3]
T ∈ Ωsens = (0, 1)3 and additional

constraints

|uj
i (t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, 2, (36)

|uj
i (t)| ≤ 0.2, ∀t ∈ T, j = 1, . . . , N, i = 3. (37)

We can notice that Ωsens is of dimension 3 and Ωsys is of

dimension 2, and that Ωsys lies in the boundary of Ωsens.

The remote sensing function f is defined in a way that is very

similar to a camera embedded on an unmanned air vehicle.

We assume the mobile node’s attitude is determined by an

orthogonal basis directed by the control input uj
s. uj

s gives

us the direction the robot is facing, the second axis is taken
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parallel to the x3 = 0 plane and the third axis is obtained by

completing the orthogonal basis in a direct way. The obtained

basis is {ej1, ej2, ej3}, with ej1 = uj
s. The view vector of

the j-th sensor is taken as −ej3 which can be seen as a

camera facing downward. The vertical field of view is chosen

as π
3 and the horizontal field of view is taken as π

2 . Since

we decided to model our remote sensor as a camera, we

choose a resolution of 3× 3. Measurements are taken at the

intersection of the field of view and Ωsys. To give the reader

a better insight of the remote sensing function, we provide a

visual description in Fig.1. The orthogonal basis is in black,

the view vector is represented by a red line and the visual

footprint is represented by a blue trapezoid.
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Fig. 1. Description of the remote sensing function.

The purpose of our optimization is to obtain the trajecto-

ries of a team of three sensors so as to determine the best

possible estimates of the parameters θ1, θ2 and θ3.

The determination of the Fisher information matrix for a

given experiment requires the knowledge of the vector of

the sensitivity coefficients g = col[g1, g2, g3] along sensor

trajectories. The FIM can be obtained using the direct

differentiation method [9] by solving the following set of

PDEs:

∂y

∂t
= ∇ · (κ∇y) + 20exp(−50(x1 − t)2), (38)

∂g1
∂t

= ∇ · ∇y +∇ · (κ∇g1),

∂g2
∂t

= ∇ · (x1∇y) +∇ · (κ∇g2),

∂g3
∂t

= ∇ · (x2∇y) +∇ · (κ∇g3),

in which the first equation represents the original state

equation and the next three equations are obtained from

the differentiation of the first equation with respect to the

parameters θ1, θ2 and θ3, respectively. The initial and

Dirichlet boundary conditions for all the four equations are

homogeneous.

Since the sensing function is not pointwise, we reformulate

Eqn.8 for our illustrative example.

g(x, t) =
res∑

i=1

res∑

j=1

∇ϑy(xij , t;ϑ)
∣∣
ϑ=θ0/res

2, (39)

where res stands for the resolution of the sensor (3 in

our case). In addition, to prevent the mobile nodes from

intersecting with the systems’s domain Ωsys, which would be

equivalent to a crash, the optimality criteria is reformulated

as,

J (s0,u) = Φ [M(s)] +
1

|x3|
. (40)

The resulting optimal trajectory of one mobile sensor can

be observed in Fig.2. The results for a team of two sensors

is displayed in Fig.3, and the case for three sensors is given

in Fig.4.
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Fig. 2. D-Optimal trajectory of one sensor. The initial positions are marked
with open circles and the final positions are designated by triangles. The
measured area is delineated by a blue trapezoid.
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Fig. 3. D-Optimal trajectories of two sensors. The initial positions are
marked with open circles and the final positions are designated by triangles.
The measured area is delineated by a blue trapezoid.

V. CONCLUSION

We have extended the existing framework of the design

of mobile sensor trajectories which minimizes the volume

of the confidence ellipsoid for the estimates to the emerging
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Fig. 4. D-Optimal trajectories of three sensors. The initial positions are
marked with open circles and the final positions are designated by triangles.
The measured area is delineated by a blue trapezoid.

field of remote sensing. For that purpose, we introduced a

remote sensing function linking the mobility domain and the

sensing domain. It is important to notice that the introduced

formulation can still be transformed into a canonical optimal

control problem. This reformulation allows the problem to be

solved by the MATLAB toolbox RIOTS 95, a collection of

routines capable of solving a large class of finite-time optimal

control problems, with the help of the MATLAB Partial

Differential Equation Toolbox. The method was then applied

to an illustrative example to demonstrate its applicability.
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